Giúp tui =((
\(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right).\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A A A B B B C C C K K K M M M D D D N N N
a/Xét \(\Delta KMD\)và \(\Delta CMA\)có:MD=MA(gt);KM=MC(do M là trung điểm KC);^KMD=^CMA(đối đỉnh)
Do đó:\(\Delta KMD=\Delta CMA\left(c.g.c\right)\)
b/\(\Delta KMD=\Delta CMA\left(c.g.c\right)\Rightarrow\widehat{MKD}=\widehat{MCA}\Rightarrow KD//CA\Rightarrow\widehat{CKD}=\widehat{ACB}=30^0\Rightarrow\widehat{AKD}=90^0+30^0=120^0\)c/Ta có KN//AC(do cùng vuông góc với AB),mà KD//CA nên K;N;D thẳng hàng
Vì \(\left(3a-4\right)^{500}\ge0\)\(\forall a\inℝ\); \(\left(9-3b\right)^{600}\ge0\)\(\forall b\inℝ\)
\(\Rightarrow\left(3a-4\right)^{500}+\left(9-3b\right)^{600}\ge0\)\(\forall a,b\inℝ\)
Mà \(\left(3a-4\right)^{500}+\left(9-3b\right)^{600}\le0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3a-4=0\\9-3b=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=4\\3b=9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=\frac{4}{3}\\b=3\end{cases}}\)
Vậy....
\(a.\frac{x-1}{x+2}=\frac{4}{5}\)
\(\Rightarrow\frac{x+2-3}{x+2}=\frac{4}{5}\)
\(\Rightarrow1-\frac{3}{x+2}=\frac{4}{5}\)
\(\Rightarrow\frac{3}{x+2}=1-\frac{4}{5}\)
\(\Rightarrow\frac{3}{x+2}=\frac{1}{5}\)
\(\Rightarrow\frac{3}{x+2}=\frac{3}{15}\Rightarrow x+2=15\)
\(\Rightarrow x=13\)( thỏa mãn )
ko đăng linh tinh
banjc hưa đọc nôi quy ak
thì bạn hãy đọc đi
áp dụng t/c của dãy thỉ số bằng nhau, ta có
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
=>12x-15y=0 <=> 12x=15y <=> \(\frac{x}{15}=\frac{y}{12}\Rightarrow\frac{x}{60}=\frac{y}{48}\) (1)
20z-12x=0 <=> 20z=12x <=> \(\frac{x}{20}=\frac{z}{12}\Rightarrow\frac{x}{60}=\frac{z}{36}\) (2)
từ (1) và (2) => \(\frac{x}{60}=\frac{y}{48}=\frac{z}{36}\)
áp dụng tc của dãy tỉ số bằng nhau, ta có
\(\frac{x}{60}=\frac{y}{48}=\frac{z}{36}=\frac{x+y+z}{60+48+36}=\frac{48}{144}=13\)
=> x=60:3=20
y=48:3=16
z=36:3=12
vậy ......
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(\Rightarrow\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}4x=5y\\3y=4z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{5}=\frac{y}{4}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Rightarrow}\frac{x}{5}=\frac{y}{4}=\frac{z}{3}}\)
Áp dụng tinh chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=16\\z=12\end{cases}}\)
Bài giải
\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot\left(63\cdot1,2-21\cdot3,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot\left(75,6-75,6\right)}{1-2+3-4+...+99-100}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\cdot0}{1-2+3-4+...+99-100}\)
\(=\frac{0}{1-2+3-4+...+99-100}\)
\(=0\)
Cam on ban nhee :3333