Chứng tỏ S chia hết cho 10
2 nhân S =1+3+3 mũ 2+3 mũ 3+...+3 mũ 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Một số được coi là scp nếu khi phân tích ra dạng các thừa số nguyên tố thì số mũ ứng với mỗi thừa số nguyên tố đó phải chẵn.
$23^5+23^{12}+23^{2003}=23^5(1+23^7+23^{1998})$ chia hết cho $23^5$ nhưng không chia hết cho $23^6$ (do $1+23^7+23^{1998}\not\vdots 23$)
Tức là khi phân tích ra thừa số nguyên tố thì $23^5+23^{12}+23^{2003}$ chứa thừa số nguyên tố là 23 nhưng số mũ tối đa là 5 (là số lẻ)
Do đó số trên không phải scp.
70 người gấp 5 người số lần là: 70: 5 = 14 (lần)
70 người đập trong 1 ngày được số mét khối đá là: 13 \(\times\) 14 = 182(m3)
Đs..
Trong 1 giờ, đội thứ nhất làm được: 1/3 (công việc)
Trong 1 giờ, đội thứ hai làm được: 1/6 (công việc)
Thời gian để hai đội làm chung xong công việc:
1 : (1/3 + 1/6) = 2 (giờ)
150% = 3/2
Hiệu số phần bằng nhau:
3 - 2 = 1 (phần)
Số thóc ở kho A:
24 : 1 × 3 = 72 (tấn)
Số thóc ở kho B:
72 - 24 = 48 (tấn)
Lời giải:
Hiệu số nước mắm của thùng 1 so với thùng 2:
$18\times 2=36$ (lít)
Lúc đầu thùng 1 có số nước mắm là: $(150+36):2=93$ (lít)
Lúc đầu thùng 2 có số nước mắm là: $150-93=57$ (lít)
Lời giải:
a. $E, F$ là trung điểm của $AB, AC$
$\Rightarrow EF$ là đường trung bình của tam giác $ABC$ ứng với cạnh $BC$
$\Rightarrow EF\parallel BC$
$\Rightarrow EFCB$ là hình thang
Mà $\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)
$\Rightarrow EFCB$ là hình thang cân.
b. Vì $EFCB$ là htc nên $EC=BF$
Vì $E,F$ là trung điểm $AB,AC$ và $AB=AC$ nên:
$EB=AB:2=AC:2=FC$
Xét tam giác $EBC$ và $FCB$ có:
$EB=FC$
$BC$ chung
$EC=FB$ (cmt)
$\Rightarrow \triangle EBC=\triangle FCB$ (c.c.c)
$\Rightarrow \widehat{ECB}=\widehat{FBC}$
Hay $\widehat{OCB}=\widehat{OBC}$
$\Rightarrow OBC$ là tam giác cân.
c. Xét tam giác $AOB$ và $AOC$ có:
$AO$ chung
$AB=AC$
$OB=OC$ (do tam giác $OBC$ cân tại $O$)
$\Rightarrow \triangle AOB=\triangle AOC$ (c.c.c)
$\Rightarrow \widehat{BAO}=\widehat{CAO}$
$\Rightarrow AO$ là phân giác $\widehat{A} (1)$
Mặt khác: Tam giác $ABC$ cân tại $A$ nên trung tuyến AM đồng thời là phân giác $AM$ của góc $\widehat{A}(2)$
Từ $(1), (2)\Rightarrow A,O,M$ thẳng hàng.
\(2a^2+8b^2-8ab\)
\(=2\left(a^2-4ab+4b^2\right)\)
\(=2\left(a-2b\right)^2\)
2S = 1 + 3 + 3² + 3³ + ... + 3¹¹
⇒ 6S = 3 + 3² + 3³ + 3⁴ + ... + 3¹²
⇒ 4S = 6S - 2S = (3 + 3² + 3³ + 3⁴ + ... + 3¹²) - (1 + 3 + 3² + 3³ + ... + 3¹¹)
= 3¹² - 1
= 531440
⇒ S = 531440 : 4
= 132860 ⋮ 10
Vậy S ⋮ 10