TÌM a,b để:
x^4-x^3y-x^2y^2+axy^3+by^4 chia hết cho x^3-2xy+3y^2
GIÚP MÌNH VS NHA! MÌNH CẦN GẤP LẮM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2Mg + O2 ---> 2MgO
4Al + 3O2 ----> 2Al2O3
b, Gọi số mol của MgO là x
Gọi số mol của Al2O3 là y
2Mg + O2 ---> 2MgO
2x 2x
4Al + 3O2 ----> 2Al2O3
4y 2y
=> 24x +27y = 7,5
40x +102y = 13,1
=> x= 0,3
y= 0,01
mMg= 0,3* 24= 7,2
mAl= 0,01* 27= 0,27
a/ \(\orbr{\begin{cases}x-2=0\\2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}\)
\(a,\left(x-2\right)\left(2x-5\right)=0.\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\2x=5\Leftrightarrow x=\frac{5}{2}\end{cases}}}\)
Vậy ....
\(b,\left(0,2x-3\right)\left(0,5x-8\right)=0\left(\text{Mạo muội sửa đề nha 0,5 thành 0,5x}\right)\)
\(\Leftrightarrow\orbr{\begin{cases}0,2x-3=0\\0,5x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}0,2x=3\\0,5x=8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\\x=16\end{cases}}\)
Vậy ... ( có j sai thì bỏ qua cho)
\(c,2x\left(x-6\right)+3\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\2x=-3\Leftrightarrow x=-\frac{3}{2}\end{cases}}}\)
Vậy ...
\(d,\left(x-1\right)\left(2x-4\right)\left(3x-9\right)=0\)
\(\Leftrightarrow2.3\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)
( ko có ngoặc vuông 3 cái nên mk trình bày kiểu này)
+ TH1:
x-1=0 <=> x= 1
+ TH2:
x-2=0 <=> x=2
+TH3:
x-3 = 0 <=> x = 3
\(a+b+c=\frac{3}{2}\Rightarrow\left(a+b+c\right)^2=\frac{9}{4}\)
hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=\frac{9}{4}\)
Suy ra \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)
Ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (tự c/m,không làm được ib)
Ta có: \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)
\(\ge\frac{9}{4}-2.\frac{\left(a+b+c\right)^2}{3}=\frac{9}{4}-2.\frac{\left(\frac{9}{4}\right)}{3}=\frac{3}{4}^{\left(đpcm\right)}\)
Easy!
Ta có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)
Cộng 3 bđt vế theo vế ta được:
\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Dấu "=" xảy ra <=> a=b=c=1/2
bạn ghi lại đầu bài đi mk nhìn khó hiểu wá
x4- x3y - x2y2 + axy3+ by4 chia hết cho x3- 2xy + 3y2
ĐƯỢC CHƯA VẬY?