a) Cho A = 5a+3b; B = 13a+8b(a; b thuộc N*)chứng minh (A; B) = (a; b)
b) Tổng quát A = ma + nb; B = pa + qb thỏa mãn |mq - np| = 1 với a; b; m; n; p; q thuộc N*. Chứng minh (A; B) = (a; b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng t/c của dãy thỉ số bằng nhau, ta có
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
=>12x-15y=0 <=> 12x=15y <=> \(\frac{x}{15}=\frac{y}{12}\Rightarrow\frac{x}{60}=\frac{y}{48}\) (1)
20z-12x=0 <=> 20z=12x <=> \(\frac{x}{20}=\frac{z}{12}\Rightarrow\frac{x}{60}=\frac{z}{36}\) (2)
từ (1) và (2) => \(\frac{x}{60}=\frac{y}{48}=\frac{z}{36}\)
áp dụng tc của dãy tỉ số bằng nhau, ta có
\(\frac{x}{60}=\frac{y}{48}=\frac{z}{36}=\frac{x+y+z}{60+48+36}=\frac{48}{144}=13\)
=> x=60:3=20
y=48:3=16
z=36:3=12
vậy ......
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(\Rightarrow\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}4x=5y\\3y=4z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{5}=\frac{y}{4}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Rightarrow}\frac{x}{5}=\frac{y}{4}=\frac{z}{3}}\)
Áp dụng tinh chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=16\\z=12\end{cases}}\)
B = - ( 4 / 9 x - 2 / 5 )6 + 3
B = - ( 4 / 9 x - 2 / 5 )6 + 3 \(\ge\)3
Dấu " = " xảy ra \(\Leftrightarrow\)4 / 9 x - 2 / 5 = 0
\(\Rightarrow\)4 / 9 x = 2 / 5
\(\Rightarrow\) x = 9 / 10
Min B = 3 \(\Leftrightarrow\) x = 9 / 10
Gọi chiều rộng của mỗi mảnh lần lượt là a , b , c ( cm )
Ta có : chiều dài tỉ lệ nghịch với chiều rộng
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
mà chiều rộng của mảnh thứ nhất nhỏ hơn tổng chiều rộng của 2 mảnh kia là 14 cm
\(\Rightarrow b+c-a=14\)
Áp dụng tích chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{b+c-a}{4+5-3}=\frac{14}{6}=\frac{7}{3}\)
Khi đó : \(\hept{\begin{cases}\frac{a}{3}=\frac{17}{3}\Rightarrow a=17\\\frac{b}{4}=\frac{17}{3}\Rightarrow b=\frac{68}{3}\\\frac{c}{5}=\frac{17}{3}\Rightarrow c=\frac{85}{3}\end{cases}}\)
Vậy chiều rộng mỗi mảnh lần lượt là \(17cm;\frac{68}{3}cm;\frac{85}{3}cm\)
Xét \(\Delta\)OAD và \(\Delta\)OBD có :
OD : cạnh chung
OÂD = Góc OBD ( = 90° )
AÔD = BÔD ( vì Oz là phân giác của xÔy )
\(\Rightarrow\)\(\Delta\)OAD = \(\Delta\)OBD ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AD = BD ( 2 cạnh tương ứng )
\(\Rightarrow\)D là trung điểm AB
cậu làm hộ mình câu tiếp theo của bài này nhé!
2.Qua D kẻ đường thẳng vuông góc với tia Ox tại M cắt tia Oy tại F.Qua D kẻ đường thẳng vuông góc với tia Oy tại N cắt tia Ox tại E.CM rằng:
a,DB là tia p/g của \(\widehat{NDF}\)
b,MN // AB