Cho tam giác ABC vuông tại A. Điểm E di động giữa A và B . Qua B vẽ đường thẳng vuông góc với CE tại D cắt tia CA tại H. C/M:
a_ ADBC nội tiếp
b_ khi E di động giữa A và B thì \(BA.BE+CD.CE\)không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : góc BDC = góc BAC = 90 độ
=> tứ giác BDAC nội tiếp
b, Tứ giác ADBC nội tiếp
BD cắt AC ở H
=> góc HDA = góc ACB ko đổi
c, Có : BA.BE + CD.CE
= (BE+EA).BE + (CE+ED).CE
= BE^2 + CE^2 + EA.BE + ED.CE
= BE^2 + EA^2 + AC^2 + EA.BE + ED.CE
Tứ giác ADBC nội tiếp => góc BAD = góc BCD
=> tam giác DEA đồng dạng với tam giác BEC (g.g)
=> DE/BE = EA/EC
=> DE.EC = EA.EB
=> BE.BA + CE.CD = BE^2 + AE^2 + AC^2 + 2.EA.EB
= (BE+AE)^2 + AC^2 = AB^2 +AC^2 ko đổi
Tk mk nha
Vân dụng bất đẳng thức \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{\left(a+3b\right)+\left(b+2c+a\right)}=\frac{2}{a+2b+c}\)
\(\Rightarrow\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{4}{\left(b+3c\right)+\left(c+2b+a\right)}=\frac{2}{b+2c+a}\)
\(\Rightarrow\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{\left(c+3a\right)+\left(a+2b+c\right)}=\frac{2}{c+2a+b}\)
Cộng tất cả các vế bất đẳng thức trên và rút gọn ta có bất đẳng thức \(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\le\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)
Đẳng thức xảy ra khi: \(\hept{\begin{cases}a+3b=b+2c+a\\b+3c=c+2a+b\Leftrightarrow a=b=c\\c+3a=a+2b+c\end{cases}}\)
Ta áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Áp dụng vào bài toán ta có :
\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{4}{b+3c+2a+b+c}=\frac{4}{2a+2b+4c}=\frac{2}{a+b+2c}\)
\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{4}{c+3a+a+2b+c}=\frac{4}{4a+2b+2c}=\frac{2}{2a+b+c}\)
Cộng vế theo vế của bất đẳng thức ta được
\(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\ge\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)
=> ĐPCM
a) Gọi các kích thước hìh chữ nhật là x, y, z thỳ x, y, z > 0 vs x + y + z = k (ko đổi). Áp dụng bất đẳng thức Cô-si cho ba số dương ta có:
\(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{k}{3}\)
Do đó: \(\text{V}=xyz\le\left(\frac{k}{3}\right)^3\)(ko đổi).
Vậy: V đạt giá trị lớn nhất khj và chỉ khi BĐT này trở thành đẳng thức hay là x = y = z, tức là khi hình chữ nhật trở thành hình lập phương.
b) Gọi 3 kích thước của hình hộp là x, y, z (ĐK)
Áp dụng bất đẳng thức Cô - si cho 3 số dương ta có :
\(x+y+z\ge3\sqrt[3]{xyz}\)
Từ đây ta có :
x + y + z nhỏ nhất là = \(3\sqrt[3]{xyz}\)
Bất đẳng thức Cô - si xảy ra dấu "=" khi : x = y = z.
Mọi người ko cần giúp mk nữa đâu vì mk làm được rùi nha !
Áp dụng bđt : (x+y)^2 < = 2.(x^2+y^2) thì :
(a+b)^2 < = 2.(a^2+b^2) = 2 . 2 = 4
=> a+b < = 2
Áp dụng bđt cosi ta có : 2a.b < = a^2+b^2 = 2
<=> a.b < = 1
Có :
P = \(\sqrt{ab}\). ( \(\sqrt{a.\left(a+8\right)}+\sqrt{b.\left(b+8\right)}\))
< = 1 . \(\frac{\sqrt{9a.\left(a+8\right)}+\sqrt{9b.\left(b+8\right)}}{3}\)
Áp dụng bđt : x.y < = (x+y)^2/4 thì :
P < = \(\frac{9a+a+8+9b+b+8}{2.3}\)
= \(\frac{10.\left(a+b\right)+16}{6}\)
< = \(\frac{10.2+16}{6}\)= 6
Dấu "=" xảy ra <=> a=b=1
Vậy ..............
Tk mk nha
Bài này mk làm rồi nha
Bạn tham khảo ở link :
https://olm.vn/hoi-dap/question/1177459.html
Bài này mình mới giải cho bạn huytran
Bạn tham khảo ở linh sau :
htpps://olm.vn/hoi-dap/question/1177459.html