Giải hệ phương trình
x^3 + (x^2+1)(y^2+1) + y^2 = 2(3y-1)
và x^2 + x^2y^2 - 2y = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> \(\left(\sqrt{x^2+2013}+x\right)\) . \(\left(\sqrt{x^2+2013}-x\right)\). \(\left(\sqrt{y^2+2013}+y\right)\)= 2013 . \(\left(\sqrt{x^2+2013}-x\right)\)
<=> 2013 . \(\left(\sqrt{y^2+2013}+y\right)\)= 2013 . \(\left(\sqrt{x^2+2013}-x\right)\)
<=> \(\sqrt{y^2+2013}+y\)= \(\sqrt{x^2+2013}-x\)
Tương tự : \(\sqrt{x^2+2013}+x\)= \(\sqrt{y^2+2013}-y\)
=> x=-y
=> x+y = 0
Tk mk nha
\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)
\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)
\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)
\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)
Bạn ơi hình như đề cho thừa thì phải
Vì nếu bạn thay x=2 thì f(x) ko cp
Sửa lại đề rùi nói cho mk , mk làm cho nha
a, Xét tứ giác ABIK có :
góc AIB = góc AKB = 90 độ
=> tứ giác ABIK nội tiếp
b, C/m đc : CH vuông góc với AB
=> góc ACH + góc CAB = 90 độ (1)
Có : góc ABE = góc ACE = ( 1/2 số đo cung AE )
Lại có : góc ABE + góc BAC = 90 độ
=> góc ACE + góc BAC = 90 độ (2)
Từ (1) và (2) => góc ACH = góc ACE
=> Tam giác CIH = góc CIE (cgv-gn)
=> CE=CH
Tương tự : CD=CH
=> CD=CE
a . Gọi AH ∩ BC=D,BH ∩ AC=E,CH ∩ AB=F
\(\Rightarrow AD\perp BC,BE\perp AC,CF\perp AB\)
\(\Rightarrow\widehat{ADC}=\widehat{AFC}=90^0\) => ◊AFDC nội tiếp
\(\Rightarrow\widehat{DCF}=\widehat{DAF}\)
VÌ H đối xứng H' qua BC
\(\Rightarrow HH'\perp BC\Rightarrow A,H,,D,H'\)thẳng hàng
\(\Rightarrow\widehat{BAH'}=\widehat{DAF}=\widehat{FDC}=\widehat{HCB}\)
Lại có: H đối xứng với H' qua BC
\(\Rightarrow\widehat{BCH'}=\widehat{HCB}\)
\(\Rightarrow\widehat{BCH'}=\widehat{BAH'}\Rightarrow\)
\(\Rightarrow BC\perp AA'\Rightarrow A,H,D,H',A'\) thẳng hàng
Vì \(H,H'\) đối xứng qua BC , A,A' đối xứng qua BC
\(\Rightarrow\widehat{BHC}=\widehat{BH'C},\widehat{BAC}=\widehat{BA'C}\)
Lại có ◊ ABH'C nội tiếp
\(\Rightarrow\widehat{BAC}+\widehat{BH'C}=180^0\)
\(\Rightarrow\widehat{BA'C}+\widehat{BHC}=180^0\)
=> ◊ BHCA' nội tiếp
=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp \(\Delta A'BC\)
Ta có : A , A' đối cứng qua BC
\(\Rightarrow A'B=AB,CA=CA'\Rightarrow\Delta ABC=\Delta A'BC\left(c.c.c\right)\)
=> Bán kính đường tròn ngoại tiếp \(\Delta A'BC\) bằng bán kính đường tròn ngoại tiếp ΔABC
=> Bán kính đường tròn ngoại tiếp \(\Delta BHC\) bằng bán kính đường tròn ngoại tiếp ΔABC
Để phương trình có hai nghiệm phân biệt thì:
\(\left(-10m\right)^2-36m>0\Leftrightarrow100m^2-36m>0\Leftrightarrow m\left(100m-36>0\right)\)
\(\Leftrightarrow m>0,36\)
Giải phương trình :
x2 - 10mx + 9m = 0
\(\Delta=0,36\Rightarrow\sqrt{\Delta}=0,6\)
<=> x1 = 5m - 0,3
x2 = 5m + 0,3
x1 - 9x2 = 0
ok , lm tiếp đi
t nghĩ câu a, bạn làm được rồi
b) thì bn chứng minh \(\Delta HDA\infty HCB\left(c-g-c\right)\)
=> ĐPCM
c) thì bạn kẻ HE cắt BC tại M
Thì bn dùng đồng dạng chứng minh được \(BE.BA=BM.BC;CE.CD=CM.CB\)
rồi cộng vào sẽ = BC^2 k đổi
^^