Cho các số dương x, y, z thỏa mãn: x2 + y2 +z2\(\ge\)1. Chứng minh rằng \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17+9+2005=2031
bạn là từ có 3 chữ bắt đầu=b-->a-->n và có dấu nặng
có nghĩa là friend
(x+2)^4 + (x+8)^4 = 272
*) Cách 1: đặt t = x+5 , có x+2 = t-3 ; x+8 = t+3
ptrình thành (t-3)^4 + (t+3)^4 = 272 <=> (t²+9-6t)² + (t²+9+6t)² = 272
<=> (t²+9)² + 36t² - 12t(t²+9) + (t²+9)² + 36t² + 12t(t²+9) = 272
<=> (t²+9)² + 36t² = 136 <=> (t²)² + 54t² - 55 = 0 <=> t² = 1 ; t² = -55 (loại)
* t = x+5 = -1 <=> x = -6
* t = x+5 = 1 <=> x = -4
KL: ptrình có 2 no: x = -6 or x = -4
~ ~ ~
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab
đặt u = (x+8)(x+2)
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u
=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u²
có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x...
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab
đặt u = (x+8)(x+2)
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u
=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u²
có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x...
\(PT< =>8x\left(8x-1\right)^2\left(8x-2\right)=72\)
\(< =>8x\left(8x-2\right)\left(64x^2-16x+1\right)=72\)
\(< =>\left(64x^2-16x\right)\left(64x^2-16x+1\right)=72\)
Đặt \(64x^2-16x+\frac{1}{2}=t\)
\(PT< =>\left(t-\frac{1}{2}\right)\left(t+\frac{1}{2}\right)=72\)
\(< =>t^2=\frac{289}{4}\)
\(< =>\orbr{\begin{cases}t=\frac{17}{2}\\t=\frac{-17}{2}\end{cases}}\)
\(TH1:t=\frac{17}{2}\)
\(PT< =>64x^2-16x+\frac{1}{2}=\frac{17}{2}\)
\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{4}\end{cases}}\)
\(TH2:t=\frac{-17}{2}\)
\(PT< =>64x^2-16x+\frac{1}{2}=\frac{-17}{2}\)
\(< =>64x^2-16x+9=0\)
\(< =>\left(8x-1\right)^2+8=0\left(VL\right)\)
Vậy S={1/2;-1/4}
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\) (áp dụng svacxo)
Áp dụng bđt phụ \(a^2+b^2+c^2\ge ab+bc+ca\)
=>\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2+y^2+z^2=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\sqrt{\frac{1}{3}}}\)
Cách 2:
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)
Tương tự hai bđt còn lại , cộng theo vế:
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge x^2+y^2+z^2=1\)(đpcm)
Cách 3:
\(\frac{x^3}{y}+\frac{x^3}{y}+y^2\ge3\sqrt[3]{\frac{x^3}{y}.\frac{x^3}{y}.y^2}=3x^2\)
Hay \(\frac{2x^3}{y}\ge3x^2-y^2\)
Tương tự 2 BĐT còn lại rồi cộng theo vế rồi chia cho 2 thu được đpcm
Cách 4:
\(\frac{x^3}{y}+\frac{x^3}{y}+xy+xy\ge4\sqrt[4]{x^8}=4x^2\)
Hay \(\frac{2x^3}{y}\ge4x^2-2xy\). Tương tự hai BĐT còn lại và cộng theo vế rồi làm nốt:v
P/s: Lời giải trên dùng kỹ thuật ghép cặp, một kĩ thuật rất gây ức chế cho em vì nhiều khi nghĩ không ra cần ghép với số nào:v