K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2019

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\) (áp dụng svacxo)

Áp dụng bđt phụ \(a^2+b^2+c^2\ge ab+bc+ca\)

=>\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^2+y^2+z^2=1\\x=y=z\end{cases}\Leftrightarrow x=y=z=\sqrt{\frac{1}{3}}}\)

31 tháng 8 2019

Cách 2:

\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)

Tương tự hai bđt còn lại , cộng theo vế:

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge x^2+y^2+z^2=1\)(đpcm)

Cách 3:

\(\frac{x^3}{y}+\frac{x^3}{y}+y^2\ge3\sqrt[3]{\frac{x^3}{y}.\frac{x^3}{y}.y^2}=3x^2\)

Hay \(\frac{2x^3}{y}\ge3x^2-y^2\)

Tương tự 2 BĐT còn lại rồi cộng theo vế rồi chia cho 2 thu được đpcm

Cách 4:

\(\frac{x^3}{y}+\frac{x^3}{y}+xy+xy\ge4\sqrt[4]{x^8}=4x^2\)

Hay \(\frac{2x^3}{y}\ge4x^2-2xy\). Tương tự hai BĐT còn lại và cộng theo vế rồi làm nốt:v

P/s: Lời giải trên dùng kỹ thuật ghép cặp, một kĩ thuật rất gây ức chế cho em vì nhiều khi nghĩ không ra cần ghép với số nào:v

lấy 12 nhân với 16 là ra kết quả

xin lỗi bạn mình tính nhầm

29 tháng 1 2019

thiếu tá trên trực thăng tỉa tạch tach tạch tạch..........

29 tháng 1 2019

246+356=602

29 tháng 1 2019

bạn là người luôn chia sẻ buồn vui với mình

29 tháng 1 2019

17+9+2005=2031

bạn là từ có 3 chữ bắt đầu=b-->a-->n và có dấu nặng

có nghĩa là friend

29 tháng 1 2019

= 55

k nha

kb lun

29 tháng 1 2019

1+2+3+4+5+6+7+8+9+10=55

29 tháng 1 2019

(x+2)^4 + (x+8)^4 = 272 

*) Cách 1: đặt t = x+5 , có x+2 = t-3 ; x+8 = t+3 
ptrình thành (t-3)^4 + (t+3)^4 = 272 <=> (t²+9-6t)² + (t²+9+6t)² = 272 
<=> (t²+9)² + 36t² - 12t(t²+9) + (t²+9)² + 36t² + 12t(t²+9) = 272 
<=> (t²+9)² + 36t² = 136 <=> (t²)² + 54t² - 55 = 0 <=> t² = 1 ; t² = -55 (loại) 
* t = x+5 = -1 <=> x = -6 
* t = x+5 = 1 <=> x = -4 
KL: ptrình có 2 no: x = -6 or x = -4 
~ ~ ~ 
*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 

*) Cách 2: ad hằng đẳng thức: a²+b² = (a-b)² + 2ab và a²+b² = (a+b)² - 2ab 
đặt u = (x+8)(x+2) 
Có: (x+2)² + (x+8)² = [(x+2)-(x+8)]² + 2(x+2)(x+8) = 36+2u 

=> (x+2)^4 + (x+8)^4 = [(x+2)²+(x+8)²]² - 2(x+2)².(x+8)² = [36+2u]² - 2u² 

có ptrình: 272 = (36-2u)² - 2u² ; giải cái này tìm u sau đó thay lại chổ đặt => x... 

29 tháng 1 2019

Ta có: 3x3 + xy=3

=>x( 3x2 + y) =3

Xét các trường hợp:

* Nếu x= 1 thì y=0

* Nếu x= -1 thì y= -6

* Nếu x= 3 thì y= -26

* Nếu x=-3 thì y= -28

Vay...

29 tháng 1 2019

 Nhows k cho mình nhá

29 tháng 1 2019

\(PT< =>8x\left(8x-1\right)^2\left(8x-2\right)=72\)

\(< =>8x\left(8x-2\right)\left(64x^2-16x+1\right)=72\)

\(< =>\left(64x^2-16x\right)\left(64x^2-16x+1\right)=72\)

Đặt \(64x^2-16x+\frac{1}{2}=t\)

\(PT< =>\left(t-\frac{1}{2}\right)\left(t+\frac{1}{2}\right)=72\)

\(< =>t^2=\frac{289}{4}\)

\(< =>\orbr{\begin{cases}t=\frac{17}{2}\\t=\frac{-17}{2}\end{cases}}\)

\(TH1:t=\frac{17}{2}\)

\(PT< =>64x^2-16x+\frac{1}{2}=\frac{17}{2}\)

\(< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{-1}{4}\end{cases}}\)

\(TH2:t=\frac{-17}{2}\)

\(PT< =>64x^2-16x+\frac{1}{2}=\frac{-17}{2}\)

\(< =>64x^2-16x+9=0\)

\(< =>\left(8x-1\right)^2+8=0\left(VL\right)\)

Vậy S={1/2;-1/4}