Giải phương trình hộ mình với
a/(1-\(\frac{x-1}{x+1}\))(x+2) = \(\frac{x+1}{x-1}\)+\(\frac{x-1}{x+1}\)
b/ (x-5)(3-2x)(3x+4)=0
c/(2x-1)(x-3)(x+7)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
là sao bạn????
Có phải đề là Tìm số tự nhiên nhỏ nhất chia hết cho 2 mà từ 0 đến 9
Giả sử hội trường có a dãy và b là số ghế của mỗi dãy. (a,b∈N∗a,b∈N∗).
Ta có phương trình: ab=500ab=500 và
⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25⇒(a−3)(b+3)=506⇒ab−3b+3a−9=506⇒3(a−b)=15⇒a−b=5⇒a(a−5)=500⇔a=25
Vậy lúc đầu người ta định xếp 2525 dãy ghế.
gọi số thứ 1 là x ĐK x,y >0
--------------2----y
do tỉ số giữa 2 số là 3/5 => 5x=3y (1)
số thứ 1 chia 9 bé hơn số thứ 2 chia 6 là 3 đơn vị nên ta có phương trình
y/6 - x/9 = 3 (2)
từ (1) và (2) ta có hệ phương trình
........
x=18 y=30
vậy ........
\(\frac{2x+1}{89}+\frac{2x+4}{86}+\frac{2x+8}{82}+3=0\)
\(\frac{2x+1}{89}+1+\frac{2x+4}{86}+1+\frac{2x+8}{82}+1-3+3=0\)
\(\frac{2x+90}{89}+\frac{2x+90}{86}+\frac{2x+90}{82}=0\)
\(\left(2x+90\right)\left(\frac{1}{89}+\frac{1}{86}+\frac{1}{82}\right)=0\)
mà \(\frac{1}{89}+\frac{1}{86}+\frac{1}{82}\ne0\)
\(\Rightarrow2x+90=0\)
\(\Rightarrow2x=-90\)
\(\Rightarrow x=-45\)
Vậy \(x=-45\)
@Lam Ngo Tung dòng 2 công mỗi phân thức thêm 1 rồi trừ đi 3 sao cộng tiếp với 3 thế :v
\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x\pm2=0\\x^2-10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x^2=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\left|\sqrt{10}\right|\end{cases}}\) (cho x + 2 và x - 2 mình gộp chung cho gọn,bạn làm nhớ tách ra nhé)
Dự đoán đẳng thức xảy ra tại \(a=b=c=\sqrt{3}\)
Ta có: \(\sqrt{a^2+1}=\sqrt{\frac{1}{4}}.\sqrt{4\left(a^2+1\right)}\le\sqrt{\frac{1}{4}}\left(\frac{4+a^2+1}{2}\right)=\frac{5+a^2}{4}\)
Thiết lập hai bđt còn lại tương tự và cộng theo vế:
\(VP\le3+\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)\)\(=\frac{27+a^2+b^2+c^2}{4}\)
Ta chỉ cần chứng minh: \(ab+bc+ca\ge\frac{27}{4}+\frac{a^2+b^2+c^2}{4}\)
Đến đây chưa nghĩ ra =((
Lạy trời cho con đừng gặp ngõ cụt như nãy nx,làm mà cứ ngõ cụt chán ~v
Lời giải:
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\) (do a,b,c dương nên a + b + c > 0 tức là abc > 0)
Lại có: \(1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\Rightarrow VT=ab+bc+ca\ge9\) (1)
Ta sẽ c/m \(VP=3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le9\)
\(\Leftrightarrow A=\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le6\)
Thật vậy: \(A=\frac{1}{2}\left[\sqrt{4\left(a^2+1\right)}+\sqrt{4\left(b^2+1\right)}+\sqrt{4\left(c^2+1\right)}\right]\)
\(\le\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)=\frac{15+a^2+b^2+c^2}{4}\)
Lại gặp ngõ cụt nữa r,=((Ai đó giúp em vs!!!
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Rightarrow\left(x-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2=\left(y-\frac{1}{y}\right)^2=0\)
\(\Leftrightarrow x=y=1=-1\)
Forever Miss You : có cách này nhanh hơn =))
Áp dụng BĐT AM-GM ta có:
\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\ge2.\sqrt{\frac{x^2.1}{x^2}}+2.\sqrt{\frac{y^2.1}{y^2}}=2+2=4\)
Mà \(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{x^2}\\y^2=\frac{1}{y^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=1\\y^4=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)