Cho tam giác ABC có trung tuyến AM. MD là tia phân giác của góc AMB, ME là tia phân giác của góc AMC
a) cm AM đi qua trung điểm của DE
b) Qua E kẻ đường thẳng d // AM và cắt AB ở N. Cm \(\frac{NA}{AB}=\frac{AE}{AC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)ĐKXĐ : \(x\ne\pm4\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2-11x+9x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)
\(\Leftrightarrow x=8\)( t/m )
Vậy....
\(\frac{x}{40}+\frac{x}{35}=7,5\)
\(\Rightarrow x\cdot35+x\cdot40=7,5\)
\(\Rightarrow x\cdot(35+40)=7,5\)
\(\Rightarrow x\cdot75=7,5\)
\(\Rightarrow x=0,1\)
P/S : Hoq chắc :>
Ta có : \(\frac{x}{40}+\frac{x}{35}=7,5\)
\(\Rightarrow\frac{35x}{1400}+\frac{40x}{1400}=\frac{15}{2}\)
\(\Rightarrow\frac{75x}{1400}=\frac{15}{2}\)
\(\Rightarrow\frac{3x}{56}=\frac{420}{56}\)
\(\Rightarrow3x=420\)
\(\Rightarrow x=420:3=140\)
Vậy x = 140
hướng dẫn cách làm-tự làm tiếp nha :)
a) đặt \(k=x^2-4x\), ta có:\(k^2-2k=15\)\(\Rightarrow k^2-2x+1=16\Rightarrow\left(k-1\right)^2=4^2=\left(-4\right)^2\)
b) đặt \(A=x^2-3x\), ta có: \(A^2-2A-8=0\Rightarrow A^2-2A+1=9\Rightarrow\left(A-1\right)^2=3^2=\left(-3\right)^2\)
c)theo đề \(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\x^2-8x+9=0\end{cases}}\)
\(x^2-4x+3=0\Leftrightarrow x^2-4x+4=1\Leftrightarrow\left(x-2\right)^2=1^2=\left(-1\right)^2\)
\(x^2-8x+9=0\Leftrightarrow x^2-8x+16=7\Leftrightarrow\left(x-4\right)^2=\pm\sqrt{7}^2\)
vt ko chi tiết bn ib là đc rùi, sai tớ làm gì T.T
mà tớ làm mẫu 1 bài thui nha, bài còn lại có cách làm òi. bn tự dựa vô nha
\(\text{Đặt }k=x^2-4x,\text{ta có:}\)
\(\left(x^2-4x\right)^2-2.\left(x^2-4x\right)=15\)
\(\Leftrightarrow k^2-2k=0\)
\(\Leftrightarrow k^2-2k+1=16\)
\(\Leftrightarrow\left(k-1\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}k-1=4\\k-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}k=5\\k=-3\end{cases}}}\)
\(\text{Với }k=5,\text{Ta có: }x^2-4x=5\Rightarrow x^2-4x-5=0\Rightarrow x^2-5x+x-5=0\)
\(\Rightarrow x.\left(x-5\right)+\left(x-5\right)=0\Rightarrow\left(x+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
\(\text{Với }k=-3,\text{ta có: }x^2-4x=-3\Rightarrow x^2-4x+3=0\Rightarrow k^2-3x-x+3=0\)
\(\Rightarrow x.\left(x-3\right)-\left(x-3\right)=0\Rightarrow\left(x-1\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy...
a) \(6x^2-x-2=0\)
\(\Leftrightarrow6x^2-4x+3x-2=0\)
\(\Leftrightarrow2x\left(3x-2\right)+\left(3x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\2x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-1}{2}\end{cases}}\)
Vậy....
b) Ko có đề
c) Ko có đề