K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2022

2x-y=3 => 2x=3

Ta có:

  4x/2y=22x/2y=2y+3/2y=8

DD
3 tháng 3 2022

\(x^2+y^2=z^2\)

Công thức tổng quát có dạng: 

\(x=k\left(m^2-n^2\right),y=k2mn,z=k\left(m^2+n^2\right)\)(\(m,n\inℤ\))

\(xyz=k^32mn\left(m^4-n^4\right)\)

- Chứng minh \(xyz\)chia hết cho \(3\):

Nếu \(m,n\)có ít nhất một số chia hết cho \(3\)suy ra \(xyz\)chia hết cho \(3\).

Nếu \(m,n\)đều không chia hết cho \(3\)suy ra \(m^4,n^4\)đều chia cho \(3\)dư \(1\)

suy ra \(m^4-n^4\)chia hết cho \(3\).

Suy ra \(xyz\)chia hết cho \(3\).

- Chứng minh \(xyz\)chia hết cho \(4\)

Nếu \(m,n\)có ít nhất một số chẵn suy ra \(2mn\)chia hết cho \(4\)

suy ra \(xyz\)chia hết cho \(4\).

Nếu \(m,n\)đều lẻ thì \(m^4,n^4\)đều lẻ nên \(m^4-n^4\)chẵn. 

Suy ra \(xyz\)chia hết cho \(4\).

- Chứng minh \(xyz\)chia hết cho \(5\)

Nếu \(m,n\)có ít nhất một số chia hết cho \(5\)suy ra \(xyz\)chia hết cho \(5\).

Nếu \(m,n\)đều không chia hết cho \(5\)suy ra \(m^4,n^4\)đều chia cho \(5\)dư \(1\)

suy ra \(m^4-n^4\)chia hết cho \(5\).

Suy ra \(xyz\)chia hết cho \(5\).

Vậy \(xyz\)chia hết cho cả \(3,4,5\)mà \(3,4,5\)đôi một nguyên tố cùng nhau suy ra \(xyz\)chia hết cho \(3.4.5=60\).

Ta có đpcm. 

Suy ra \(xyz\)chia hết cho \(3\).

2 tháng 3 2022

\(\left(-5\right)^2-4.\left(-3\right)\left(-2\right)=25-24=1>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)

\(M=x_1+\dfrac{1}{x_1}+\dfrac{1}{x_2}+x_2\\ =\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\\ =\dfrac{-5}{3}+\dfrac{-5}{3}:\dfrac{2}{3}\\ =\dfrac{-5}{3}-\dfrac{5}{2}\\ =\dfrac{-25}{6}\)

-3x2-5x-2=0

Ta có :-3-(-5)-2=0

=>Phương trình có 2 nghiệm \(\hept{\begin{cases}x_1=-1\\x_2=\frac{-5}{3}\end{cases}}\)

Thay x1;x2 vào M ta được:

M=(-1)+\(\frac{1}{-1}\)+\(\frac{1}{\frac{-5}{3}}\)+\(\frac{-5}{3}\)

=(-1)+(-1)+\(-\frac{3}{5}+-\frac{5}{3}\)

=\(-\frac{64}{15}\)

2 tháng 3 2022

Đặt x+y=a; x-y=b

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\2a+b=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\4a+2b=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a-2b=9\\7a=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3-2b=9\\a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-3\\x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=-2\\x+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\-1+y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

2 tháng 3 2022

\(\left\{{}\begin{matrix}x+5y=9\\3x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5y=9\\15x+5y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}14x=-14\\y=\dfrac{9-x}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

2 tháng 3 2022

Khó tởm

2 tháng 3 2022

khó thế ai làm nổi

2 tháng 3 2022

Không vẽ hình vì sợ duyệt.

a) Dễ thấy \(\widehat{CMD}=90^0\)(góc nội tiếp chắn nửa đường tròn)

Theo đề bài, ta thấy \(\widehat{COF}=90^0\) , từ đó \(\widehat{CMD}=\widehat{COF}\left(=90^0\right)\)

Xét tứ giác ODMF, có \(\widehat{COF}\) là góc ngoài tại O và\(\widehat{COF}=\widehat{DMF}\)\(\Rightarrow\)Tứ giác ODMF là tứ giác nội tiếp (dhnb)

b) Xét (O) có \(\widehat{EFM}\)là góc có đỉnh bên trong đường tròn nên \(\widehat{EFM}=\frac{sđ\widebat{AC}+sđ\widebat{BM}}{2}\)

Mặt khác \(sđ\widebat{BC}=sđ\widebat{AC}\left(=90^0\right)\)nên \(\widehat{EFM}=\frac{sđ\widebat{BC}+sđ\widebat{BM}}{2}=\frac{sđ\widebat{CM}}{2}\)(1)

Lại có \(\widehat{EMC}\)là góc tạo bởi tia tiếp tuyến ME và dây MC nên \(\widehat{EMC}=\frac{1}{2}sđ\widebat{CM}\)(2)

Từ (1) và (2) \(\Rightarrow\widehat{EFM}=\widehat{EMC}\left(=\frac{1}{2}sđ\widebat{CM}\right)\)\(\Rightarrow\Delta EFM\)cân tại E.

c) Bạn xem lại đề.

2 tháng 3 2022

a, CME là góc tạo bởi tia tiếp tia tiếp tuyến và dây cung => CME= 1/2 sđ cung MC 

CDM là góc nội tiếp đường tròn => CDM = 1/2 sđ cung MC 

=> CME = CDM = OMD ( do tg ODM cân , OD= OM= R)

Mà CME + CMO = 90 độ =>  CMO + OMD = 90 <=> DMF = 90 độ 

Tg ODMF có DOF + DMF = 180 độ

=> Tg ODMF là tg nội tiếp  (tổng hai góc đối = 180 độ)

b, Tg ODMF nội tiếp => ODM = MFE ( góc trong = góc ngoài đỉnh đối diện ) 

Mà ODM = EMF = 1/2 sđ cung MC => EMF = EFM

=> Tg EFM cân tại E

c, Bạn xem lại thử đề nhé :v mk vẽ hình có vẻ ko đùng lắm

2 tháng 3 2022

ko bt có đúng ko

image

2 tháng 3 2022

đây nhé

image

NV
1 tháng 3 2022

\(\Delta'=\left(k-1\right)^2+4k=k^2+2k+1=\left(k+1\right)^2\ge0;\forall k\)

\(\Rightarrow\) Phương trình luôn có nghiệm với mọi k

b. Để phương trình có 2 nghiệm pb \(\Rightarrow k\ne-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(k-1\right)\\x_1x_2=-4k\end{matrix}\right.\)

Kết hợp với điều kiện đề bài ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(k-1\right)\\3x_1-x_2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2k-2\\4x_1=2k\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{k}{2}\\x_2=\dfrac{3k-4}{2}\end{matrix}\right.\)

Thế vào \(x_1x_2=-4k\)

\(\Rightarrow\dfrac{k}{2}.\left(\dfrac{3k-4}{2}\right)=-4k\)

\(\Leftrightarrow3k^2-4k=-16k\)

\(\Leftrightarrow3k^2+12k=0\Rightarrow\left[{}\begin{matrix}k=0\\k=-4\end{matrix}\right.\)