K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2022

Do \(x^2+2mx+n=0\) có nghiệm \(\Rightarrow m^2-n\ge0\)

Xét pt: \(x^2+2\left(k+\dfrac{1}{k}\right)mx+n\left(k+\dfrac{1}{k}\right)^2=0\)

\(\Delta'=\left(k+\dfrac{1}{k}\right)^2m^2-n\left(k+\dfrac{1}{k}\right)^2=\left(k+\dfrac{1}{k}\right)^2\left(m^2-n\right)\ge0\) với mọi k

\(\Rightarrow\)Pt đã cho có nghiệm

4 tháng 3 2022

em đọc ko hiểu gì hết

Giả sử 4n3-5n-1 là SCP

Có 4n3-5n-1=(n+1)(4n2-4n-1)

Gọi (n+1; 4n2-4n-1)=d   ( d thuộc N)

=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d

 Mà 4n2-4n-1 =(n+1)(4n-8) + 7 

=> 7 chia hết cho d

=> d = 7 hoặc 1

Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7

=> d=1

=> (n+1; 4n2-4n-1) =1

mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP

=> n+1 và 4n2-4n-1 đồng thời là SCP

=> 4n+4 và 4n2-4n-1 là SCP

=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP

mà 4n2+3 chia 4 dư 3 

=> Vô lý

=> Giả sử sai

=> đccm

26 tháng 7 2024

sai r bạn ơi

 

 

 

xét m=0 thay vào ptr đã cho được x=-1 (loại)

xét m khác 0

ptr đã cho là ptr bậc 2 có 2 nghiệm phân biệt khi ∆ >0

<=>  (m2+m+1)2-4m(m+1) >0

<=> (m2+m)2+2(m2+m) +1 -4(m2+m)>0

<=> (m2+m)2-2(m2+m)+1>0

<=> (m2+m-1)2>0

<=> m2+m-1 khác 0

<=> m khác \(\frac{-1\pm\sqrt{5}}{2}\)

Gọi x1, x2 là hai nghiệm phân biệt của ptr 

=> \(\hept{\begin{cases}x1+x2=\frac{m^2+m+1}{m}\\x1.x2=\frac{m+1}{m}\end{cases}}\)(1)

Vì ptr đã cho có hai nghiệm khác -1 nên 

{x1 # -1 và x2 #-1

=> (x1+1)(x2+1) # 0 và (x1+1) + (x2+1) # 0

=> x1.x2 +x1+x2+1 khác 0 và x1 +x2 +2 khác 0

thay (1) vào 

NV
5 tháng 3 2022

Với \(m=0\) không thỏa mãn

Với \(m\ne0\) pt có 2 nghiệm pb khác -1 khi:

\(\left\{{}\begin{matrix}\Delta=\left(m^2+m+1\right)^2-4m\left(m+1\right)>0\\m+\left(m^2+m+1\right)+m+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m\right)^2-2\left(m^2+m\right)+1>0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+m-1\right)^2>0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+m-1\ne0\\m^2+3m+2\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne\dfrac{-1\pm\sqrt{5}}{2}\\m\ne-2\\m\ne-1;m\ne0\end{matrix}\right.\)

4 tháng 3 2022

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

4 tháng 3 2022

?????

4 tháng 3 2022

đk : x >= 0 

\(\Leftrightarrow x-2\sqrt{x}-2+\sqrt{3x+2}=0\)

\(\Leftrightarrow x-2-\left(2\sqrt{x}-2\sqrt{2}\right)+\sqrt{3x+2}-2\sqrt{2}=0\)

\(\Leftrightarrow x-2-\frac{4x-8}{2\sqrt{x}+2\sqrt{2}}+\frac{3x+2-8}{\sqrt{3x+2}+2\sqrt{2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left[1-\frac{4}{2\sqrt{x}+2\sqrt{2}}+\frac{3}{\sqrt{3x+2}+2\sqrt{2}}\right]=0\Leftrightarrow x=2\)(tmđk)

NV
4 tháng 3 2022

\(2x^2-2y^2+3xy+x+7y-3=8\)

\(\Leftrightarrow\left(2x^2-xy+3x\right)+\left(4xy-2y^2+6y\right)-\left(2x-y+3\right)=8\)

\(\Leftrightarrow x\left(2x-y+3\right)+2y\left(2x-y+3\right)-\left(2x-y+3\right)=8\)

\(\Leftrightarrow\left(x+2y-1\right)\left(2x-y+3\right)=8\)

Phương trình ước số cơ bản, bạn tự lập bảng giá trị

4 tháng 3 2022

Ta có: 2x2+3xy-2y2=7

⇒2x2−xy+4xy−2y2=7⇒2x2−xy+4xy−2y2=7

⇒x(2x−y)+2y(2x−y)=7⇒x(2x−y)+2y(2x−y)=7

⇒(2x−y)(x+2y)=7⇒(2x−y)(x+2y)=7

Ta có: 2x-y, x+2y là nghiệm của 7

Nếu 2x-y=7, x+2y=1

⇔2(2x−y)+x+2y=15⇔2(2x−y)+x+2y=15

⇔5x=15⇔x=3,y=−1(TM)⇔5x=15⇔x=3,y=−1(TM)

Tương tự:

Nếu 2x-y=1,x+2y=7⇔x=1,8;y=2,6(KTM)⇔x=1,8;y=2,6(KTM)

Nếu 2x-y=-1,x+2y=-7⇔x=−1,8;y=−2,6(KTM)⇔x=−1,8;y=−2,6(KTM)

Nếu 2x-y=-7 , x+2y=-1⇔x=−3,y=1(TM)⇔x=−3,y=1(TM)

Vậy (x;y) là (3;-1);(-3;1)

4 tháng 3 2022

Đặt \(f\left(x\right)=10x\)

Khi đó ta có \(f\left(1\right)=10=P\left(1\right)\)\(f\left(2\right)=20=P\left(2\right)\)\(f\left(3\right)=30=P\left(3\right)\)

Do đó \(P\left(x\right)-f\left(x\right)=g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

\(\Rightarrow P\left(x\right)=10+g\left(x\right).\left(x-1\right)\left(x-2\right)\left(x-3\right)\)

Vì \(P\left(x\right)\)là đa thức bậc 4 mà \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\)là đa thức bậc 3 nên \(g\left(x\right)\)là đa thức bậc 1 hay \(g\left(x\right)=x+n\)

Vậy \(P\left(x\right)=\left(x+n\right)\left(x-1\right)\left(x-2\right)\left(x-3\right)+10\)

\(\Rightarrow P\left(12\right)=\left(12+n\right)\left(12-1\right)\left(12-2\right)\left(12-3\right)=\left(n+12\right).11.10.9=990\left(n+12\right)\)

\(=990n+11880\)

Và \(P\left(-8\right)=\left(-8+n\right)\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)=\left(n-8\right)\left(-9\right)\left(-10\right)\left(-11\right)\)\(=-990\left(n-8\right)=-990n+7920\)

Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}+25=\frac{990n+11880-990n+7920}{10}+25=\frac{19800}{10}+25=2005\)

3 tháng 3 2022

Giusp mk vứiiiii

Nhân dịp sinh nhật, mẹ mua tặng Mai một chiếc bánh kem. Mai cho em Hoa 1/3 chiếc bánh, cho chị Linh 1/4 chiếc bánh. Hỏi Mai còn lại bao nhiêu phần chiếc của chiếc bánh kem đó

4 tháng 3 2022

a, Xét tứ giác BHFM có 

^BHF + ^BMF = 1800

mà 2 góc này đối 

Vậy tứ giác BHFM là tứ giác nt 1 đường tròn 

hay điểm B;H;F;M cùng thuộc 1 đường tròn 

b, Vì tứ giác BHFM nt 1 đường tròn 

=> ^HFM = ^ABE ( góc ngoài đỉnh B ) 

mà ^ABE = ^AFE ( góc nt chắn cung AE ) 

Vậy ^AFH = ^MFH 

hay FE là tia phân giác ^AFM 

4 tháng 3 2022

a, Xét tứ giác CDME có 

^MEC = ^MDC = 900

mà 2 góc này kề, cùng nhìn cạnh MC 

Vậy tứ giác CDME là tứ giác nt 1 đường tròn 

b, bạn ktra lại đề