tính giá trị biểu thức
a, 5 - ( -5/11) +(1/3)\(^2\): 3
b, \(2^3\) + 3 x (1/2)\(^0\) + (-2)\(^2\) : 1/2
c, ( 3/4 )\(^2\) - (1/3)\(^4\) : (1/9)\(^2\) - (3/11)\(^0\) : (-1/5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
ΔADB vuông tại D
=>\(DA^2+DB^2=AB^2\)
=>\(DB=\sqrt{5^2-4^2}=3\left(cm\right)\)
b: Xét ΔHDB vuông tại D và ΔHEA vuông tại E có
\(\widehat{DHB}=\widehat{EHA}\)(hai góc đối đỉnh)
Do đó: ΔHDB~ΔHEA
=>\(\dfrac{HD}{HE}=\dfrac{HB}{HA}\)
=>\(HD\cdot HA=HB\cdot HE\)
Kẻ đường cao BD của tam giác ABC \(\left(D\in AC\right)\)
Khi đó \(AD=AB.cosA=c.cosA\)
\(BD=AB.sinA=c\sqrt{1-cos^2A}\)
\(CD=AC-AD=b-c.cosA\)
Tam giác BCD vuông tại D
\(\Rightarrow BC^2=CD^2+BD^2\)
\(\Leftrightarrow a^2=\left(b-c.cosA\right)^2+\left(c\sqrt{1-cos^2A}\right)^2\)
\(\Leftrightarrow a^2=b^2-2bc.cosA+c^2.cos^2A+c^2\left(1-cos^2A\right)\)
\(\Leftrightarrow a^2=b^2+c^2-2bc.cosA\)
Ta có đpcm.
\(\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+\dfrac{3}{10\cdot13}+...+\dfrac{3}{87\cdot90}\)
\(=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{87}-\dfrac{1}{90}\)
\(=\dfrac{1}{4}+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)+\left(\dfrac{1}{10}-\dfrac{1}{10}\right)+...+\left(\dfrac{1}{87}-\dfrac{1}{87}\right)-\dfrac{1}{90}\)
\(=\dfrac{1}{4}-\dfrac{1}{90}\)
\(=\dfrac{45}{180}-\dfrac{2}{180}\)
\(=\dfrac{43}{180}\)
1 tạ = 100 kg
a) Số tiền mua cam:
30000 × 100 = 3000000 (đồng)
Số tiền lãi:
3000000 × 15% = 450000 (đồng)
b) Số tiền bán cam nếu cam không bị hư:
40000 × 100 = 4000000 (đồng)
Số tiền bị hao hụt:
4000000 - 3000000 - 450000 = 550000 (đồng)
Số cam bị hỏng:
550000 : 40000 = 13,75 (kg)
a) 1 tạ = 100kg
Số tiền người đó đã bỏ ra là:
\(100\times30000=3000000\left(đ\right)\)
Số tiền lãi là:
\(15\%\times3000000=450000\left(đ\right)\)
b) Người buôn bán hết số cam được số tiền là:
\(3000000+450000=3450000\left(đ\right)\)
Số kg cam người đó đã bán là:
\(3450000:40000=86,25\left(kg\right)\)
Số kg cam bị hỏng là:
\(100-86,25=13,75\left(kg\right)\)
11 × 68 + 46 × 33
= 11 × 68 + 46 × 3 × 11
= 11 × 68 + 132 × 11
= 11 × (68 + 132)
= 11 × 200
= 11 × 2 × 100
= 22 × 100
= 2200
11 x 68 + 46 x 33
=748 + 1518
= 2266
ko biết đúng ko nữa
\(\dfrac{x^2+4+6}{5-6x}< 0\)
Nhận xét:
\(x^2\ge0,\forall x\)
\(\Rightarrow x^2+4+6\ge10,\forall x\)
Do đó \(\dfrac{x^2+4+6}{5-6x}< 0\) khi và chỉ khi:
\(5-6x< 0\)
\(\Leftrightarrow6x>5\)
\(\Leftrightarrow x>\dfrac{5}{6}\)
Vậy \(x>\dfrac{5}{6}\)
\(\sqrt{x}=1-\sqrt{3}\)
Nhận xét:
\(\sqrt{3}>\sqrt{1}=1\)
\(\Rightarrow1-\sqrt{3}< 0\)
\(\Rightarrow\sqrt{x}< 0\) (vô lí)
Vậy không tìm được giá trị x thoả mãn đề bài
a; 5 - (- \(\dfrac{5}{11}\) ) + (\(\dfrac{1}{3}\))2 : 3
= 5 + \(\dfrac{5}{11}\) + \(\dfrac{1}{9}\) : 3
= \(\dfrac{55}{11}\) + \(\dfrac{5}{11}\) + \(\dfrac{1}{9}\) x \(\dfrac{1}{3}\)
= \(\dfrac{55}{11}\) + \(\dfrac{5}{11}\) + \(\dfrac{1}{27}\)
= \(\dfrac{60}{11}\) + \(\dfrac{1}{27}\)
= \(\dfrac{1620}{297}\) + \(\dfrac{11}{297}\)
= \(\dfrac{1631}{297}\)
b; 23 + 3 x (\(\dfrac{1}{2}\))0 + (- 2)2 : \(\dfrac{1}{2}\)
= 8 + 3 x 1 + 4 : \(\dfrac{1}{2}\)
= 8 + 3 + 4 x \(\dfrac{2}{1}\)
= 8 + 3 + 8
= 11 + 8
= 19