Cho tam giác ABC có diện tích S. Gọi M, N là trung điểm các cạnh AC, AB. Trên BC lấy các điểm P,Q sao cho PB=PQ=QC. BM cắt AQ, NP lần lượt tại K, I. Tính diện tích PIKQ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi H là hình chiếu vuông góc của O lên d
\(\Rightarrow AA_1||OH||BB_1\)
Áp dụng định lý Thales trong tam giác \(ABA_1\)
\(\dfrac{OH}{AA_1}=\dfrac{BH}{AB}\)
Áp dụng định lý Thales trong tam giác \(ABB_1\)
\(\dfrac{OH}{BB1}=\dfrac{AH}{AB}\)
\(\Rightarrow\dfrac{OH}{AA_1}+\dfrac{OH}{BB_1}=\dfrac{BH}{AB}+\dfrac{AH}{AB}\)
\(\Rightarrow OH.\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=1\)
\(\Rightarrow OH=\dfrac{a.b}{a+b}\)
Do a, b không đổi \(\Rightarrow OH\) không đổi
Hay khoảng cách từ O đến d không đổi khi A, B chạy trên d

3. Chứng minh công thức:
AF/AB + BE/BC + CN/CA = 1 trong tam giác ABC
Giả thiết:
- Tam giác ABC.
- Các điểm F, E, N lần lượt nằm trên các cạnh AB, BC, CA.
Cách chứng minh:
Trường hợp đặc biệt:
Nếu F, E, N là các điểm chia các cạnh theo cùng một tỉ lệ (ví dụ: F chia AB theo tỉ lệ x, E chia BC theo tỉ lệ y, N chia CA theo tỉ lệ z sao cho x + y + z = 1).
Chứng minh tổng quát:
- Gọi AF = x·AB, BE = y·BC, CN = z·CA, với x, y, z ∈ (0;1).
- Khi đó:
\(\frac{A F}{A B} + \frac{B E}{B C} + \frac{C N}{C A} = x + y + z\) - Nếu ba điểm F, E, N chia ba cạnh theo tỉ lệ x, y, z sao cho x + y + z = 1, thì tổng trên bằng 1.
Trường hợp đặc biệt:
Nếu F, E, N là trung điểm các cạnh, thì mỗi phân số đều bằng 1/2, tổng lại là 3/2 ≠ 1.
Vậy công thức đúng khi ba điểm chia ba cạnh theo tỉ lệ x, y, z với x + y + z = 1.

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA~ΔABC
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA~ΔHAC
=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)
=>\(HA^2=HB\cdot HC\)
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
ΔBHA~ΔBAC
=>\(\dfrac{S_{BHA}}{S_{BAC}}=\left(\dfrac{BA}{BC}\right)^2=\left(\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
a) Ta có đcao AH(H thuộc BC)->AH vuông góc với BC->AHB=AHC=90 xét ABH và CBA có AHB=CAB=90 CBA chung ->tg ABH đồng dạng với tg CBA(g-g) b)xét tg ABH vuông tại H có HBA+HAB=90(1) Xét tg ABC có ABC+ACB=90 hayHBA+ACH=90(2) Từ (1) và (2)->HAB=ACH Xét tgHAC và tg HBA có ACH=BAH(cmt) AHC=BHA=90 -> tg HAC đồng dạng với tg HBA(g-g)->AH/HB=CH/AH hay AH2=BH.CH

Giải:
ΔABC ∼ΔA'B'C' ta có:
Góc A = góc A'; Góc B = góc B'; Góc C = Góc C'
Và các tỉ số:
\(\frac{AB}{A^{\prime}B^{\prime}}=\frac{AC}{A^{\prime}C^{\prime}}=\frac{BC}{B^{\prime}C^{\prime}}\)
Vậy khẳng định không đúng là khẳng định:
C. \(\frac{AB}{A^{\prime}B^{\prime}}\) = \(\frac{A^{\prime}C^{\prime}}{AC}\)

Giải:
y = (m -2)\(x\) + 2
⇒ (m- 2)\(x\) - y + 2 = 0
Gốc tọa độ O(0; 0)
Khoảng cách từ gốc tọa độ O(0; 0) đến đường thẳng (d) là:
d(O;d) = \(\frac{\left|\left(m-2\right)\right..0-1.0+2\left|\right.}{\sqrt{\left(m-2\right)^2+1}}\) = \(\frac{2}{\sqrt{\left(m-2\right)^2+1}}\)
Khoảng cách từ gốc tọa độ O đến đường thẳng (d) là lớn nhất khi A = \(\frac{2}{\sqrt{\left(m-2\right)^2+1}}\) lớn nhất.
Vì 2 > 0; \(\sqrt{\left(m-2\right)^2+1}\) > 0 ∀ m nên
A lớn nhất khi (m - 2)\(^2\) + 1 là nhỏ nhất.
(m - 2)\(^2\) ≥ 0 ∀ m
(m - 2)\(^2\) + 1 ≥ 1 ∀ m
\(\sqrt{\left(m-2\right)^2+1}\) ≥ 1 ∀ m
A = \(\frac{2}{\sqrt{\left(m-2^{}\right)^2+1}}\) ≤ \(\frac21=2\) dấu bằng xảy khi m - 2 = 0
suy ra m = 2
Vậy khoảng cách từ gốc tọa độ đến đồ thị lớn nhất là \(2\) khi m = 2

B =\(\frac{1}{1.5}\) + \(\frac{1}{5.9}\) + ...+ \(\frac{1}{\left(4n-3\right).\left(4n+1\right)}\)
B = \(\frac14\).(\(\frac{4}{1.5}+\frac{4}{5.9}+\cdots+\frac{4}{\left(4n-3\right).\left(4n+1\right)}\)
B = \(\frac14\).(\(\frac11\) - \(\frac15\) + \(\frac15\) - \(\frac19\) + ... + \(\frac{1}{4n-3}-\frac{1}{4n+1}\))
B = \(\frac14\).(\(\frac11\) - \(\frac{1}{4n+1}\))
B = \(\frac14\).\(\frac{4n}{4n+1}\)
B = \(\frac{n}{4n+1}\)

\(-\dfrac{15x^2y^3}{18x^3y^5}=-\dfrac{15}{18}\cdot\dfrac{x^2}{x^3}\cdot\dfrac{y^3}{y^5}=\dfrac{-5}{6\cdot x\cdot y^2}\)

Bài 2:
a: Khi x=4 thì \(M=\dfrac{4+3}{4-2}=\dfrac{7}{2}\)
b: \(M=\dfrac{2}{3}\)
=>\(\dfrac{x+3}{x-2}=\dfrac{2}{3}\)
=>3(x+3)=2(x-2)
=>3x+9=2x-4
=>3x-2x=-4-9
=>x=-13(nhận)
c: Để M là số nguyên dương thì \(\left\{{}\begin{matrix}x+3⋮x-2\\M>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2+5⋮x-2\\\dfrac{x+3}{x-2}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5⋮x-2\\\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2\in\left\{1;-1;5;-5\right\}\\\left[{}\begin{matrix}x>2\\x< -3\end{matrix}\right.\end{matrix}\right.\)
=>\(x\in\left\{3;7\right\}\)
Bài 3:
ΔMIN vuông tại I
=>\(IM^2+IN^2=MN^2\)
=>\(x=MI=\sqrt{12^2-5^2}=\sqrt{144-25}=\sqrt{119}\left(cm\right)\)
ΔMIP vuông tại I
=>\(IM^2+IP^2=PM^2\)
=>\(y=\sqrt{119+100}=\sqrt{219}\left(cm\right)\)
Bài 4:
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔBAC~ΔBHA
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA~ΔHAC
=>\(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)
=>\(HA^2=HB\cdot HC\)
c: Xét tứ giác AIHK có \(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
nên AIHK là hình chữ nhật
=>\(\widehat{AKI}=\widehat{AHI}\)
mà \(\widehat{AHI}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AKI}=\widehat{ABC}\)
ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}\)
\(\widehat{AKI}+\widehat{MAC}=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM\(\perp\)IK
Giải chi tiết:
Bước 1: Xác định phương trình đường thẳng CD
Giả sử:
\(a x + b y + c = 0 (\text{ph}ụ\&\text{nbsp};\text{thu}ộ\text{c}\&\text{nbsp};\text{v} \overset{ˋ}{\text{a}} \text{o}\&\text{nbsp};\text{t}ọ\text{a}\&\text{nbsp};độ\&\text{nbsp};\text{A},\&\text{nbsp};\text{B})\)
Bước 2: Tìm điểm cố định mà CD luôn đi qua
\(a \left(\right. x_{0} , y_{0} , A , B \left.\right) \cdot x_{0} + b \left(\right. x_{0} , y_{0} , A , B \left.\right) \cdot y_{0} + c \left(\right. x_{0} , y_{0} , A , B \left.\right) = 0 \forall A , B\)
Biến đổi phương trình về dạng đa thức theo tham số liên quan đến A và B. Để phương trình đúng với mọi A, B, hệ số của các hạng tử chứa tham số phải bằng 0.
Bước 3: Giải hệ phương trình
\(\left(\right. m + 1 \left.\right) x_{0} - \left(\right. 2 m - 3 \left.\right) y_{0} + 5 = 0 \forall m\)
\(m \left(\right. x_{0} - 2 y_{0} \left.\right) + \left(\right. x_{0} + 3 y_{0} + 5 \left.\right) = 0 \forall m\)
\(\left{\right. x_{0} - 2 y_{0} = 0 \\ x_{0} + 3 y_{0} + 5 = 0\)
\(x_{0} = 2 y_{0} 2 y_{0} + 3 y_{0} + 5 = 0 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } y_{0} = - 1 \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x_{0} = - 2\)
Bước 4: Kiểm tra lại
Ví dụ minh họa:
Cho tam giác ABC cố định. Trên AB lấy điểm D di động, trên AC lấy điểm E di động sao cho \(A D = C E\). Chứng minh DE luôn đi qua một điểm cố định.
Giải:
\(\frac{x - t}{- t} = \frac{y}{t - 0} \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x + y = t\)
\(x_{0} + y_{0} = t \forall t \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } x_{0} + y_{0} = 0\)
Chọn \(M \left(\right. 1 , - 1 \left.\right)\) (nằm trên đường thẳng \(x + y = 0\)).
Kết luận: DE luôn đi qua điểm cố định \(M \left(\right. 1 , - 1 \left.\right)\).
Đáp án:
Đường thẳng CD luôn đi qua điểm cố định \(M \left(\right. x_{0} , y_{0} \left.\right)\) được xác định bằng cách giải hệ phương trình từ phương trình tổng quát của CD145.
Giải chi tiết:
Bước 1: Xác định vị trí các điểm P, I, K, Q
Giả thiết:
Bước 2: Tính chất hình học
Bước 3: Tính diện tích PIKQ
\(S_{P I K Q} = \frac{1}{2} S_{A B C}\)
Ví dụ minh họa:
Cho tam giác ABC có diện tích \(20 \textrm{ } \text{cm}^{2}\).
\(S_{P I K Q} = \frac{1}{2} \times 20 = 10 \textrm{ } \text{cm}^{2}\)
Kết luận:
Diện tích tứ giác PIKQ bằng một nửa diện tích tam giác ABC nếu các điểm P, I, K, Q là trung điểm của các cạnh134.
Công thức tổng quát:
\(S_{P I K Q} = \frac{1}{2} S_{A B C}\)
Đáp án:
Diện tích tứ giác PIKQ là \(\boxed{\frac{1}{2} S_{A B C}}\).