Bài 2. ($1,5$ điểm) Cho hàm số $y=(m-2) x+m+3$ (1) (với $m$ là tham số và $m \neq 2$ ).
1) Vẽ đồ thị hàm số (1) với $m=1$.
2) Xác định giá trị của ${m}$ để đồ thị hàm số (1) cắt đường thẳng $y=5 x-1$ tại một điểm trên trục tung.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: $x\geq \frac{-1}{3}$
PT \(\Leftrightarrow 3(\sqrt{3x^2+1}-2)+2(\sqrt{3x+1}-2)+2(x-1)=0\)
\(\Leftrightarrow 3.\frac{3(x^2-1)}{\sqrt{3x^2+1}+2}+2.\frac{3(x-1)}{\sqrt{3x+1}+2}+2(x-1)=0\\ \Leftrightarrow (x-1)\left[\frac{3(x+1)}{\sqrt{3x^2+1}+2}+\frac{2}{\sqrt{3x+1}+2}+2\right]=0\)
Dễ thấy với $x\geq \frac{-1}{3}$ thì biểu thức trong ngoặc vuông luôn dương.
$\Rightarrow x-1=0$
$\Leftrightarrow x=1$ (tm)
Bài 1: (3\(\sqrt{3}\) + 2\(\sqrt{5}\)). \(\sqrt{3}\) - \(\sqrt{60}\)
= 3.(\(\sqrt{3}\))2 +2.\(\sqrt{5}\).\(\sqrt{3}\) - \(\sqrt{4}\).\(\sqrt{15}\)
= 3.3 + 2.\(\sqrt{15}\) - 2.\(\sqrt{15}\)
= 9 + 0
= 9
2, Hàm số y = (2 - \(\sqrt{3}\))\(x\) + 2
Xét a = 2 - \(\sqrt{3}\) ta có
a = 2 - \(\sqrt{3}\) = \(\sqrt{4}\) - \(\sqrt{3}\) > 0
Vậy hàm số đồng biến trên \(ℝ\)
Muốn đạt độ cao 30003000 m so với mặt đất thì máy bay phải bay một đoạn đường dài:
\(BC=\dfrac{AB}{sin\left(23^o\right)}=\dfrac{3000}{sin\left(23^o\right)}\approx7678\left(m\right)\)
Kết luận: Muốn đạt độ cao 30003000 m so với mặt đất thì máy bay phải bay một đoạn đường dài gần 7678m
Bài 2:
1) Thay m = 1(TMĐK) vào hàm số y = (m - 2)x + m + 3 có
⇒ y = (1 - 2)x + 1 + 3
⇒ y = -x + 4
Xét (d) : y = -x + 4 có bảng
2) Để hai đường thẳng (d)
:y=(m - 2)x+m + 3�1:�=��+� và (d'):y=5x- 1�2:�=�′�+�′ cắt nhau tại một điểm trên trục tung thì
⇒\(\left\{{}\begin{matrix}m-2\ne5\\m+3=-1\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}m\ne7\\m=-2\end{matrix}\right.\)(TM) ⇒ m = -2
Vậy m = -2 thì hai đường thẳng (d)
:y=(m - 2)x+m + 3�1:�=��+� và (d'):y=5x- 1�2:�=�′�+�′ cắt nhau tại một điểm trên trục tung.
Bài 2:
1) Thay m = 1(TMĐK) vào hàm số y = (m - 2)x + m + 3 có
⇒ y = (1 - 2)x + 1 + 3
⇒ y = -x + 4
Xét (d) : y = -x + 4 có bảng
2) Để hai đường thẳng (d)
:y=(m - 2)x+m + 3�1:�=��+� và (d'):y=5x- 1�2:�=�′�+�′ cắt nhau tại một điểm trên trục tung thì
⇒\(\left\{{}\begin{matrix}m-2\ne5\\m+3=-1\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}m\ne7\\m=-2\end{matrix}\right.\)(TM) ⇒ m = -2
Vậy m = -2 thì hai đường thẳng (d)
:y=(m - 2)x+m + 3�1:�=��+� và (d'):y=5x- 1�2:�=�′�+�′ cắt nhau tại một điểm trên trục tung.