K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1
NV
8 tháng 8 2024

Đặt \(A=\left(1-\dfrac{2}{42}\right)\left(1-\dfrac{2}{56}\right)\left(1-\dfrac{2}{72}\right)...\left(1-\dfrac{2}{2652}\right)\)

\(=\left(1-\dfrac{2}{6.7}\right)\left(1-\dfrac{2}{7.8}\right)\left(1-\dfrac{2}{8.9}\right)...\left(1-\dfrac{2}{51.52}\right)\)

Ta có:

\(1-\dfrac{2}{n\left(n+1\right)}=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{n^2+n-2}{n\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

Do đó:

\(A=\dfrac{5.8}{6.7}.\dfrac{6.9}{7.8}.\dfrac{7.10}{8.9}...\dfrac{50.53}{51.52}\)

\(=\dfrac{5.6.7...50}{6.7.8...51}.\dfrac{8.9.10...53}{7.8.9...52}=\dfrac{5}{51}.\dfrac{53}{7}=\dfrac{265}{357}\)

7 tháng 8 2024

`-1,25 . (3/2 - 0,75) + 3,5`

`= -1,25 . (1,5 - 0,75) + 3,5`

`= -1,25 . 0,75 + 3,5`

`= -0,9375 + 3,5`

`= 2,5625`

7 tháng 8 2024

\(-1,25\cdot\left(\dfrac{3}{2}-0,75\right)+3,5\\ =-\dfrac{5}{4}.\left(\dfrac{6}{4}-\dfrac{3}{4}\right)+\dfrac{7}{2}\\ =-\dfrac{5}{4}\cdot\dfrac{3}{4}+\dfrac{7}{2}\\ =-\dfrac{15}{16}+\dfrac{56}{16}\\ =\dfrac{41}{16}\)

NV
7 tháng 8 2024

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(\Rightarrow P=\left(1+\dfrac{a}{-a}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{c}{-c}\right)=0\)

Th2: \(a+b+c\ne0\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

\(\Rightarrow P=\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)=\dfrac{3}{2}.\dfrac{3}{2}.\dfrac{3}{2}=\dfrac{27}{8}\)

NV
8 tháng 8 2024

Do 8 chia hết cho 4 \(\Rightarrow8^{2008}⋮4\)

\(\Rightarrow8^{2008}=4k\)

\(\Rightarrow5^{8^{2008}}=5^{4k}=\left(5^4\right)^k=625^k\)

Mà \(625\equiv1\left(mod24\right)\Rightarrow625^k\equiv1\left(mod24\right)\)

\(\Rightarrow5^{8^{2008}}\equiv1\left(mod24\right)\)

\(\Rightarrow5^{8^{2008}}+23\equiv0\left(mod24\right)\)

Hay \(5^{8^{2008}}+23\) chia hết 24

8 tháng 8 2024

Sửa đề: 

`S = 1/3 + 2/(3^2) + 3/(3^3) + ... + 100/(3^100)`

`3S = 1 + 2/3 + 3/(3^2) + ... + 100/(3^99)`

`3S - S = 1 - 100/3^100 + (2/3 - 1/3) + (3/(3^2) - 2/(3^2)) + ... + (100/(3^99) - 99/(3^99)) `

`2S = 1 - 100/(3^100) + 1/3 + 1/(3^2) + ... + 1/(3^99) `

Đặt `A = 1/3 + 1/(3^2) + ... + 1/(3^99) `

`=> 3A = 1 + 1/3 + ... + 1/(3^98) `

`=> 3A - A = (1 + 1/3 + ... + 1/(3^98)) - ( 1/3 + 1/(3^2) + ... + 1/(3^99) )`

`=> 2A = 1 - 1/(3^99)`

`=> A = (1 - 1/(3^99))/2`

Khi đó: `2S = 1 - 100/(3^100) + (1 - 1/(3^99))/2`

`S = 1/2 - 100/(2.3^100) + (1 - 1/(3^99))/4`

Ta có: `{(1/2 - 100/(2.3^100) < 1/2),((1 - 1/(3^99))/4 < 1/4):}`

`=>  1/2 - 100/(2.3^100) + (1 - 1/(3^99))/4 < 1/2 + 1/4 = 3/4`

Hay `S < 3/4 (đpcm)`

8 tháng 8 2024

3|4lớn hơn

8 tháng 8 2024

tk nhé

8 tháng 8 2024

Ông An cao 180 cm, vòng bụng 108 cm.

Ông Chung cao 160 cm, vòng bụng 70 cm.

8 tháng 8 2024

`1/4 . 2/6 . 3/8 . 4/10 . ... . 31/64 = 2^x`

`=> 1/(2.2) . 2/(2.3) . 3/(2.4) . 4/(2.5) . ... . 31/(32.2) = 2^x`

Số phân số có trong dãy là: `(31 - 1) : 1 + 1 = 31` (phân số) 

`=> (1.2.3.4...31)/(2^31 . 2 . 3 . 4 . 5 ... 31.32) = 2^x`

`=> 1/(2^31 . 32) = 2^x`

`=> 1/(2^31 . 2^5) = 2^x`

`=> 1/(2^(31+5)) = 2^x`

`=> 1/(2^36) = 2^x`

`=> 2^(-36) = 2^x`

`=> x = -36`

Vậy `x = -36`

8 tháng 8 2024

`(1/3)^(2x - 1) = 3^5`

`=> (3^(-1))^(2x - 1) = 3^5`

`=> 3^(-1.(2x-1)) =  3^5`

`=> 3^(1-2x) = 3^5`

`=> 1 - 2x = 5`

`=> 2x = 1 - 5`

`=> 2x = -4`

`=> x = -2`

Vậy `x = -2`