Ba lớp 7A, 7B, 7C cùng tham gia lao động trồng cây. Biết số cây ở lớp 7A, 7B, 7C được trồng tỉ lệ với các số 3;5;8 và hai lần số cây của lớp 7A cộng với 4 lần số cây lớp 7B trồng được nhiều hơn số cây lớp 7C trồng được là 108 cây. Tính số cây trồng được của mỗi lớp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số mới là a=10b
theo đề bài: a-b=3513
10b-b=3513
9b=3513
b=3513:9
vì 3513 không chia hết cho 9
nên không tồn tại số tự nhiên b thỏa yêu cầu đề bài
Theo đề bài ta có :
\(3x=4y=-2z\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{4}}=-\dfrac{z}{\dfrac{1}{2}}\)
mà \(2x-3y+4z=75\)
\(\Rightarrow\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{4}}=-\dfrac{z}{\dfrac{1}{2}}=\dfrac{2x-3y+4z}{\dfrac{2}{3}-\dfrac{3}{4}-2}=\dfrac{75}{-\dfrac{25}{12}}=-36\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{\dfrac{1}{3}}=36\\\dfrac{y}{\dfrac{1}{4}}=36\\-\dfrac{z}{\dfrac{1}{2}}=36\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=12\\y=9\\z=-18\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(12;9;-18\right)\)
Đặt \(t=3x=4y=-2z\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{t}{3}\\y=\dfrac{t}{4}\\z=-\dfrac{t}{2}\end{matrix}\right.\)
Thay vào phương trình còn lại. Chúng ta được
\(\dfrac{2}{3}t+\dfrac{3}{4}t-\dfrac{4}{2}t=75\)
\(\Leftrightarrow-\dfrac{7}{12}t=75\)
\(\Leftrightarrow t=-\dfrac{900}{7}\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{300}{7}\\y=-\dfrac{225}{7}\\z=\dfrac{450}{7}\end{matrix}\right.\)
Bạn đừng lo vì các thầy cô giáo, admin của OLM sẽ có thể xóa câu trả lời k phù hợp bạn nhé!
a; \(x^2\) - 6\(x\) + 8
= \(x^2\) - 2\(x\) - 4\(x\) + 8
= (\(x^2\) - 2\(x\)) - (4\(x\) - 8)
= \(x\)(\(x\) - 2) - 4(\(x\) - 2)
= (\(x-2\))(\(x\) - 4)
4\(x^2\) + 4\(x\) - 3
= 4\(x^2\) - 2\(x\) + 6\(x\) - 3
= (4\(x^2\) - 2\(x\)) + (6\(x\) - 3)
= 2\(x\)(2\(x\) - 1) + 3(2\(x\) - 1)
= (2\(x\) - 1)(2\(x\) + 3)
Ta có :
\(\left\{{}\begin{matrix}a+b+c=3\\ab+bc+ca=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=ab=1\\b=bc=1\\c=ca=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)
Nên \(E=\left(a-1\right)^{2019}+\left(b^2-1\right)^{2020}+\left(c^3-1\right)^{2021}\)
\(E=\left(1-1\right)^{2019}+\left(1^2-1\right)^{2020}+\left(1^3-1\right)^{2021}\)
\(E=0\)
\(MSC=18\Rightarrow18:3=6;18:9=2\)
\(\dfrac{2}{3}=\dfrac{2\times6}{3\times6}=\dfrac{12}{18}\)
\(\dfrac{4}{9}=\dfrac{4\times2}{9\times2}=\dfrac{8}{18}\)
\(\dfrac{7}{18}\) Giữ nguyên phân số
\(#NqHahh\)
\(90-5\times\left(2\times x-3\right)=45\)
\(5\times\left(2\times x-3\right)=90-45\)
\(5\times \left(2\times x-3\right)=45\)
\(2\times x-3=45:5\)
\(2\times x-3=9\)
\(2\times x\) \(=9+3\)
\(2\times x\) \(=12\)
\(x\) \(=12:2\)
\(x\) \(=6\)
Vậy \(x=6\)
MD=3cm
mà MD=MC(M là trung điểm của CD)
nên MC=3(cm)
MC=3CE
=>\(CE=\dfrac{3}{3}=1\left(cm\right)\)
=>ME=3-1=2(cm)
DE=EM+MD=2+3=5(cm)
Gọi số cây lớp 7A;7B;7C lần lượt là a;b;c ( a;b;c > 0, \(\in\)N)
Theo bài ra ta có \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}\)và \(2a+4b-c=108\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}=\dfrac{2a+4b-c}{6+20-8}=\dfrac{108}{18}=6\Rightarrow a=18;b=30;c=48\)
Gọi a;b;c lần lượt là số cây trồng được của lớp 7A;7B; 7C
Theo đề bài ta có :
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}\) và \(2a+4b-c=108\)
The0 TCDSTLBN ta có :
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{8}=\dfrac{2a+4b-c}{2.3+4.5-1.8}=\dfrac{108}{18}=6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=6\\\dfrac{b}{5}=6\\\dfrac{c}{8}=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=18\\b=30\\c=48\end{matrix}\right.\)
Vậy số cây trồng được của lớp 7A; 7B; 7C lần lượt là \(18;30;48\)