Cho hàm số y=2x2 có đồ thị (P). Tìm các giá trị của m để đường thẳng (d): y=2mx+1 căt (P) tại hai điểm phân biệt có hoành độ x1; x2 thỏa mãn x1<x2 và |x2|-|x1|=2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm ta có
\(x^2=\left(2m+1\right)x-2m\Leftrightarrow\left(x-2m\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m\end{cases}}\)
để p cắt d tại hai điểm phân biệt thì \(2m\ne1\Leftrightarrow m\ne\frac{1}{2}\).
ta có \(\hept{\begin{cases}x_1=1\Rightarrow y_1=x_1^2=1\\x_2=2m\Rightarrow y_2=x_2^2=4m^2\end{cases}}\)Vậy \(y_1+y_2-x_1x_2=1+4m^2-2m=1\Leftrightarrow4m^2-2m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{1}{2}\end{cases}}\)
Kết hợp điều kiện hai nghiệm phân biệt ta có m =0
Xét PT hoành độ giao điểm của (P) và (d)
x2=(2m+1)x-2m
⇔x2-(2m+1)x+2m=0
a=1; b=-2m-1; c=2m
a+b+c=a+(-2m-1)+2m=0 Nên PT (1) có 2 nghiệm
x1=1 và x2=2m
*) với x1=1 ⇒y1=1
*) với x2=2m ⇒y2=(2m)2=4m2
Thay x1, x2, y1, y2 vào y1+y2-x1x2=1, ta có:
1+4m2-2m=1
⇔4m2-2m=0⇔2m(2m-1)=0 ⇔m=0 và m=\(\dfrac{1}{2}\)
Vậy với m=0 và 1/2 thì ......
Bài 1.
a. Hàm số đồng biến khi hệ số a > 0
b. Hàm số nghịch biến khi hệ số a < 0.
Bài 2. Hai đường thẳng cắt nhau khi a khác a'
Hìa đường thẳng song song với nhau khi a = a' và b khác b'
Hai đường thẳng trùng nhau khi a =a' và b = b'
ý 1 để bạn tự vẽ nhé
2. Xét phương trình hoành độ giao điểm :
\(x^2=5x+6\Leftrightarrow x^2-5x-6=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=6\end{cases}}\) tương ứng hai nghiệm trên ta có tọa độ của hai giao điểm là ( -1,1) và (6,36)
3. d' song song với d nên suy ra d' có dạng : \(y=5x+m\text{ với }m\ne6\)
phương trình hoành độ giao điểm khi đó là : \(x^2=5x+m\Leftrightarrow x^2-5x-m=0\text{ có hai nghiệm x1 x2 thỏa mãn }x_1.x_2=24\)
mà theo viet ta có : \(x_1.x_2=\frac{c}{a}=-m\Rightarrow m=-24\)
Thay lại phương trình ta có : \(x^2-5x+24=0\text{ vô nghiệm, do đó không tồn tại d' thỏa mãn đề bài}\)
HD: (d'): y= ax+b (a≠0).
- (d') // (d) nên \(\left\{{}\begin{matrix}a=5\\b\ne6\end{matrix}\right.\)⇒ (d'): y=5x+b
- Xét Pt hoành độ giao điểm của (P) với (d'):
x2=5x+b ⇔x2-5x-b =0 (1).
*) điện kiện có 2 nghiệm
*) theo viet P=-b=24 => b=-24
- Xét (O) có : ma và mb là 2 tia tiếp tuyến cắt nhau tại m , oa=r ( r là bán kính )
=> om là tia phân gác của góc aob ( theo tính chất 2 tiếp tuyến cắt nhau )
=> góc bom = góc aom = góc aob / 2
=> góc aom = 1/2 góc aob
mà góc aob= 60 độ
=> góc aom = 30 độ
vì ma là tia tiếp tuyến của dg tròn tâm o
=> ma vg góc vs oa tại a
=> goác oam = 90 độ
=> tam giác amo vg tại a
xét tam giác amo vg tại a có :
oa= cos góc aom . om ( hệ thức về cạnh góc vg )
=> r = cos 30 độ . om
=> om = r / cos 30 độ
=> om = r : căn 3 / 2= 2 r căn 3 / 3
Vậy ....
CHÚC BẠN HỌC TỐT ĐỪNG QUÊN THẢ CHO MÌNH NHÉ :)))))))
TL :
Bán kính của khinh khí cầu là :
11 . 11 = 121 ( m )
Diện tích của khinh khí cầu là :
3,14 . 121 = 379,94 (m2)
Đ/S : ....
Bán kính của khinh khí cầu là \(r=\frac{d}{2}=\frac{11}{2}\left(m\right)\)
Diện tích mặt khinh khí cầu đó là \(V=4\pi r^2=4\pi.\left(\frac{11}{2}\right)^2=4\pi.\frac{121}{4}=121\pi\approx380,13\left(m^2\right)\)
2 ,
Áp dụng BĐT AM - GM ta có :
\(2a+b+c=\left(a+b\right)+\left(a+c\right)\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\left(2a+b+c\right)^2\ge4\left(a+b\right)\left(a+c\right)\)
\(\Rightarrow\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
còn lại
= > \(M\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+c\right)\left(b+a\right)}+\frac{1}{\left(c+a\right)\left(c+b\right)}\right)\)
\(\Leftrightarrow M< \frac{1}{4}.\frac{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Leftrightarrow M\le\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Lại có \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)( theo AM - GM )
\(\Rightarrow M\le\frac{a+b+c}{2.8abc}=\frac{a+b+c}{16abc}\left(1\right)\)
Tiếp tục áp dụng BĐT AM - GM :
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab};\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ac}\)
\(\Rightarrow2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Leftrightarrow3\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
\(\Rightarrow a+b+c\le3abc\left(2\right)\)
Từ ( 1 ) , ( 2 ) \(\Rightarrow M\le\frac{3abc}{16abc}=\frac{3}{16}\)\(M\le\frac{3}{16}< \frac{9}{16}\)
\(\Rightarrow M\le\frac{9}{16}\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-\sqrt{x}}\right):\frac{\sqrt{x+1}}{3}\)
\(P=\left(\frac{\left(\sqrt{x}\right)^2}{\sqrt{x}.\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\sqrt{x}.\left(\sqrt{x}-1\right)}\right).\frac{3}{\sqrt{x}+1}\)
\(P=\frac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\sqrt{x}+1}\)
\(P=\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{3}{\sqrt{x}+1}\)
\(P=\frac{3}{\sqrt{x}-1}\)
b)
Xét PT hoành độ giao điểm:
\(\dfrac{1}{2}x^2=\dfrac{1}{4}x+\dfrac{3}{2}\Leftrightarrow2x^2-x-6=0\Leftrightarrow\left[{}\begin{matrix}x_1=2\Rightarrow y_1=2\\x_2=\dfrac{-3}{2}\Rightarrow y_2=\dfrac{9}{8}\end{matrix}\right.\)
Thay ........ vào T ta có
\(T=\dfrac{2+\dfrac{-3}{2}}{2+\dfrac{9}{8}}=\dfrac{4}{25}\)
Xét phương trình hoành độ giao điểm ta có :
\(2x^2=2mx+1\Leftrightarrow2x^2-2mx-1=0\text{ }\left(\text{*}\right)\)
Dễ thấy có ac = 2.(-1 ) = -2 < 0 nên (*) luôn có hai nghiệm phân biệt
mà rõ ràng x1 x2 trái dấu nên ta biết rằng : \(\left|x_2\right|-\left|x_1\right|=x_2+x_1=2m=2021\Leftrightarrow m=\frac{2021}{2}\)( do x2 dương, x1 âm)