K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
3 tháng 11 2023

x-1/3 = y-2/4 = z-3/5 = x-1+y-2+z-3/3+4+5 = x+y+z-6/12 = 30-6/12 = 2

=> x-1 = 6 hay x = 7

=> y-2 = 8 hay y = 10

=> z-3=10 hay z = 13

3 tháng 11 2023

3,4 - x = 4,8

x = 3,4 - 4,8

x = -1,4

3 tháng 11 2023

Giả sử x;y;z đều chẵn

\(\Rightarrow x=2a;y=2b;z=2c\Rightarrow xyz=8abc⋮4\)

Nếu x;y;z đều lẻ => (x-y); (y-z); (z-x) chẵn

\(\Rightarrow\left(x-y\right)=2a;\left(y-z\right)=2b;\left(z-x\right)=2c\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=8abc⋮4\)

Nếu trong 3 số x;y;z có ít nhất 1 số lẻ giả sử x lẻ  

=> xyz chẵn và \(xyz=2a\)

=> (y-z) chẵn và \(y-z=2b\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)=\)

\(=2a.\left(x-y\right).2b.\left(z-x\right)=4ab\left(x-y\right)\left(z-x\right)⋮4\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮4\forall x;y;z\)

Nếu 1 trong 3 số x; y; z chia hết cho 3

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)

Nếu không có số nào chia hết cho 3 ta có một số khi chia cho 3 dư 1 hoặc 2 => trong 3 số có 2 số đồng dư

=> 1 trong 3 số (x-y); (y-z); (z-x) có 1 số chia hết cho 3

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\forall x;y;z\)

Mà 3 và 4 là 2 số nguyên tố cùng nhau

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3.4=12\forall x;y;z\)

 

 

3 tháng 11 2023

a) A nguyên khi (12n + 17) ⋮ (3n + 1)

Ta có:

12n + 17 = 12n + 4 + 13

= 4(3n + 1) + 13

Để (12n + 17) ⋮ (3n + 1) thì 13 ⋮ (3n + 1)

⇒ 3n + 1 ∈ Ư(13) = {-13; -1; 1; 13}

⇒ 3n ∈ {-14; -2, 0; 12}

⇒ n ∈ {-14/3; -2/3; 0; 4}

Mà n là số nguyên

⇒ n ∈ {0; 4}

b) Để A là số nguyên thì ⋮ (10n + 9) (5n - 1)

Ta có:

10n + 9 = 10n - 2 + 11

= 2(5n - 1) + 11

Để (10n + 9) ⋮ (5n - 1) thì 11 ⋮ (5n - 1)

⇒ 5n - 1 ∈ Ư(11) = {-11; -1; 1; 11}

⇒ 5n ∈ {-10; 0; 2; 12}

⇒ n ∈ {-2; 0; 2/5; 12/5}

Mà n là số nguyên

⇒ n ∈ {-2; 0}

3 tháng 11 2023

                                  loading... 

a,Kéo dài OY cắt O'X' tại A ta có: 

  \(\widehat{XOY}\) =  \(\widehat{XOA}\)  = \(\widehat{OAO'}\) (so le trong) (1)

   \(\widehat{Y'O'X'}\) = \(\widehat{Y'O'A}\) = \(\widehat{OAO'}\) (so le trong) (2)

Kết hợp (1) Và (2) ta có:

    \(\widehat{XOY=}\) \(\widehat{X'O'Y'}\) (đpcm)

    

 

 

 

 

  

3 tháng 11 2023

loading... 

b, Kéo dài OY cắt O'Z' tại H 

             \(\widehat{ZOA}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\) (vì OZ là phân giác của góc XOY

             \(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{X'O'Y'}\) (vì OY là phân giác của góc X'O'Y')

         Mặt khác ta có \(\widehat{OAO'}\) = \(\widehat{HO'A}\) + \(\widehat{AHO'}\) (góc ngoài tam giác bằng tổng hai góc trong không kề với nó)

               \(\widehat{HO'A}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\)  ⇒ \(\widehat{AHO'}\) = \(\dfrac{1}{2}\) \(\widehat{OAO'}\) = \(\dfrac{1}{2}\) \(\widehat{XOY}\)

          ⇒ \(\widehat{ZOA}\) = \(\widehat{AHO'}\) (hai góc này ở vị trí so le trong)

         ⇒ OZ // O'Z' (đpcm)

                

 

                  

3 tháng 11 2023

loading... a) Xét ∆ABD và ∆EBD có:

AB = BE (gt)

∠ABD = ∠EBD (BD là tia phân giác của ABC)

BD là cạnh chung

⇒ ∆ABD = ∆EBD (c-g-c)

b) Do ∆ABD = ∆EBD (cmt)

⇒ AD = ED (hai cạnh tương ứng)

Lại do ∆ABD = ∆EBD (cmt)

⇒ ∠BAD = ∠BED = 90⁰ (hai góc tương ứng)

⇒ ∠DAF = ∠DEC = 90⁰

Xét hai tam giác vuông: ∆DAF và ∆DEC có:

AD = ED (cmt)

∠ADF = ∠EDC (đối đỉnh)

⇒ ∆DAF = ∆DEC (cạnh góc vuông - góc nhọn kề)

⇒ AF = EC (hai cạnh tương ứng)

c) ∆BAE có:

AB = BE (gt)

⇒ ∆BAE cân tại B

⇒ ∠BEA = ∠BAE = (180⁰ - ∠ABC) : 2  (1)

Do AF = EC (cmt)

AB = BE (gt)

⇒ AF + AB = EC + BE

⇒ BF = BC

⇒ ∆BFC cân tại B

⇒ ∠BCF = ∠BFC = (180⁰ - ∠ABC) : 2  (2)

Từ (1) và (2) suy ra:

∠BEA = ∠BCF

Mà ∠BEA và ∠BCF là hai góc đồng vị

⇒ AE // CF

3 tháng 11 2023

A = 1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹

⇒ 4A = 1 + 1/4 + 1/4² + ... + 1/4⁹⁸

⇒ 3A = 4A - A

= (1 + 1/4 + 1/4² + ... + 1/4⁹⁸) - (1/4 + 1/4² + 1/4³ + ... + 1/4⁹⁹)

= 1 - 1/4⁹⁹

⇒ A = (1 - 1/4⁹⁹)/3

Do 1 - 1/4⁹⁹ < 1

⇒ (1 - 1/4⁹⁹)/3 < 1/3

Vậy A < 1/3

2 tháng 11 2023

Vì Ot là tia phân giác \(\widehat{mOn}\) 

nên \(\widehat{mOt}=\widehat{nOt}=\dfrac12\widehat{mOn}\)

\(\Rightarrow \widehat{mOt}=\dfrac12\cdot90^o=45^o\)

Vậy: ...

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

Do $(2023-x)^2\geq 0$ với mọi $x$ nên:

$3(y-3)^2=16-(2023-x)^2\leq 16<18$

$\Rightarrow (y-3)^2< 6$

Mà $(y-3)^2\geq 0$ và $(y-3)^2$ là số chính phương với mọi $y$ nguyên.

$\Rightarrow (y-3)^2=0$ hoặc $(y-3)^2=4$

Nếu $(y-3)^2=0$ thì $y=3$.

Khi đó: $(2023-x)^2=16-3.0^2=16$

$\Rightarrow 2023-x=4$ hoặc $2023-x=-4$

$\Rightarrow x=2019$ hoặc $x=2027$

Nếu $(y-3)^2=4\Rightarrow y-3=2$ hoặc $y-3=-2$

$\Rightarrow y=5$ hoặc $y=1$
Khi đó:

$(2023-x)^2=16-3.4=4=2^2=(-2)^2$
$\Rightarrow 2023-x=2$ hoặc $2023-x=-2$

$\Rightarrow x=2021$ hoặc $x=2025$

2 tháng 11 2023

5\(x\) - 9 = 5 + 3\(x\)

5\(x\) - 3\(x\) = 5 + 9

2\(x\)       = 14

  \(x\)      =  14 : 2

   \(x\)     = 7