Cho biểu thức K = ab + 4ac – 4bc, với a, b, c là các số thực không âm thỏa mãn: a + b + 2c = 1
1, Chứng minh K lớn hơn hoặc bằng – 1/2
2, Tìm giá trị lớn nhất của biểu thức K
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ phương trình số 2 ta có
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
lần lượt thay vào 1 ta có
\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)
vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)
Gọi chiều rộng thửa ruộng là x(m) với x>0
\(\Rightarrow\) Chiều dài thửa ruộng là: \(x+10\left(m\right)\)
Do diện tích thửa ruộng là 1200 \(m^2\) nên:
\(x\left(x+10\right)=1200\)
\(\Leftrightarrow x^2+10x-1200=0\Rightarrow\left[{}\begin{matrix}x=30\\x=-40\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\) Chiều dài thửa ruộng là \(30+10=40\left(m\right)\)
Chu vi: \(2\left(30+40\right)=140\left(m\right)\)
\(\dfrac{k-1}{k!}=\dfrac{k}{k!}-\dfrac{1}{k!}=\dfrac{1}{\left(k-1\right)!}-\dfrac{1}{k!}\)
\(\Rightarrow S=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{2021!}-\dfrac{1}{2022!}\)
\(=1-\dfrac{1}{2022!}\)
Gọi thười gian chảy riêng để mồi vòi chảy đầy bể lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hpt \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\\\dfrac{18}{a}+\dfrac{3}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{24}\\\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=24\\b=12\end{matrix}\right.\left(tm\right)\)
a, Xét tứ giác BFHD có
^BFH + ^HDB = 1800
mà 2 góc này đối
Vậy tứ giác BFHD là tứ giác nt 1 đường tròn
Xét tứ giác BDEA có
^AEB = ^BDA = 900
mà 2 góc này kề, cùng nhìn cạnh AB
Vậy tứ giác BDEA là tứ giác nt 1 đường tròn
b, Xét tứ giác FECB có
^BFC = ^BEC = 900
mà 2 góc này kề, cùng nhìn cạnh BC
Vậy tứ giác FECB là tứ giác nt 1 đường tròn
Xét tam giác MBF và tam giác MCE có
^M _ chung
^MBF = ^MCE ( góc ngoài đỉnh C của tứ giác FECB )
Vậy tam giác MBF ~ tam giác MCE (g.g)
\(\dfrac{MB}{MC}=\dfrac{MF}{ME}\Rightarrow ME.MB=MF.MC\)
đề tiếp theo thiếu dữ kiện rồi bạn
Gọi 2 số đó là \(x;y\). Theo đề bài, ta có hpt \(\hept{\begin{cases}x+y=8\\xy=-33\end{cases}}\Leftrightarrow\hept{\begin{cases}y=8-x\\x\left(8-x\right)=-33\left(\cdot\right)\end{cases}}\)
Giải \(\left(\cdot\right)\), ta được \(x\left(8-x\right)=-33\)\(\Leftrightarrow x\left(x-8\right)=33\)\(\Leftrightarrow x^2-8x=33\)\(\Leftrightarrow x^2-8x-33=0\)
Ta có \(\Delta'=\left(-4\right)^2-1.\left(-33\right)=16+33=49>0\)
\(\Rightarrow\orbr{\begin{cases}x_1=\frac{-\left(-4\right)+\sqrt{49}}{1}=11\\x_2=\frac{-\left(-4\right)-\sqrt{49}}{1}=-3\end{cases}}\)
Khi \(x=11\)thì \(y=8-x=8-11=-3\)
Khi \(x=-3\)thì \(y=8-x=8-\left(-3\right)=11\)
Vậy 2 số đó là \(-3\)và \(11\)
a, \(\Delta=25-8=17\)>0 Vậy pt có 2 nghiệm pb
\(x=\dfrac{5\pm\sqrt{17}}{4}\)
b, \(\Delta=16-16=0\)Vậy pt có nghiệm kép
\(x_1=x_2=\dfrac{1}{4}\)
c, \(\Delta=1-4.2.5< 0\)Vậy pt vô nghiệm
d, \(\Delta=4+4.24=100>0\)Vậy pt có 2 nghiệm pb
\(x=\dfrac{-2-10}{-6}=2;x=\dfrac{-2+10}{-6}=-\dfrac{4}{3}\)
1
Áp dụng BĐT Cauchy cho 2 số dương:
4ac=2.b.2c≤2(b+2c2)2≤2(a+b+2c2)2=2.(12)2=12
⇒−4bc≥−12
⇒K=ab+4ac−4bc≥−4bc≥−12