cho hình thang ABCD( AB//CD) . Các đương phân giác ngoài của góc A và Góc Bcawts nhau tại E, các dường phân giác ngoàigóc B và góc C cắt nhau tại F. CM
a, EF//AB, CD
b, EF có độ dài bằng nửa chu vi hình thang ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chưa ai giúp bạn sao : olm tới rồi!
C = \(\overline{44444.......44}\) (n chữ số 4)
C = 4. \(\overline{11111.....111}\) ( chữ số 1)
giả sử C là một số chính phương thì
⇔ 4. \(\overline{1111.......111}\) là một số chính phương
vì 4 là một số chính phương nên
⇔ \(\overline{11111.....111}\) là một số chính phương
một số chính phương có tận cùng là 1 thì chữ số hàng chục phải là chữ số chẵn. mà \(\overline{1111.....111}\) lại có chữ số hàng chục là chữ số lẻ nên \(\overline{111....111}\) là một số chính phương là sai . dẫn đến điều giả sử là sai .
vậy C = \(\overline{44444...444}\) không phải là một số chính phương (đpcm)
lấy n = 2, ta thấy 44 không phải là số chính phương.
a) Xét △ABC có:
DA = DB (gt)
FB = FC (gt)
=> DF là đường trung bình của △ABC
=> DF // AC
Xét tứ giác ADFC có:
DF // AC (cmt)
=> Tứ giác ADFC là hình thang
b) Ở câu này đề bài cho bị thiếu △ABC cân tại B, vì nếu không có yếu tối này thì AF không thể bằng BG được. c) Xét tứ giác ABFH có:
AB // FH
AH // BF
=> Tứ giác ABFH là hình bình hành
=> AH = BF mà BF = FC
=> AH = FC
Xét tứ giác AHCF có:
AH // CF
AH = CF
=> AHCF là hình bình hành
=> AF // CH
d) Gọi M là giao điểm của AI và DH
Xét tứ giác ADIH có:
AD // IH
AH // DI
=> Tứ giác ADIH là hình bình hành
=> M là trung điểm của AI hay IM = \(\dfrac{1}{2}AI\)
mà AI = IC ( vì AHCF là hình bình hành)
=> IM = \(\dfrac{1}{2}IC\) =>IM=\(\dfrac{1}{3}MC\)
Xét △CHM có:
HK = \(\dfrac{1}{3}HC\)
IM=\(\dfrac{1}{3}MC\)
=> IK // MH ( định lý đảo Ta-lét)
hay IK // DH (1)
Xét △ABC có:
AF, CD là trung tuyến
mà AF cắt CD tại J => J là trọng tâm của △ABC
=> DJ = \(\dfrac{1}{3}DC\)
Xét △DHC có:
HK = \(\dfrac{1}{3}HC\)
DJ = \(\dfrac{1}{3}DC\)
=> JK // DH (2)
Từ (1) và (2) theo tiên đề Ơ-lít ta có: J, I, K thẳng hàng.
a) tứ giác AMPQ là hcn
b) ta có Ax \(\perp\) AC (gt)
M là giao điểm Ax và By ⇒ M ϵ Ax và M ϵ By
⇒ AM \(\perp\) AC
có BM // AC ⇒ AM\(\perp BM\)
xét △ APQ = △ BPM (gcg) ⇒ AQ = MB
xét tứ giác AQBM có AQ //MB; AQ = MB; AM\(\perp BM\)
⇒ AQBM là hcn
⇒ BQ \(\perp\)AC
xét △ ABC có AI, BQ là đường cao cắt nhau tại H ⇒ H là trực tâm của △ABC ⇒ CH \(\perp AB\)
c) xét △ vuông AIB có P là trung điểm AB ⇒ IP =AP = PB
mà AP = PB = PQ = MP( tc đường chéo của hcn)
⇒ IP = PQ ⇒ △ IPQ cân tại P