Bài 11. Chứng minh tồn tại một lũy thừa của 13 có tận cùng là 000 . . . 01 (có 9 chữ số 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
--> Chọn ô hoặc dãy ô mà bạn muốn định dạng.
--> Nhấn chuột phải và chọn Format Cells.
--> Trong hộp thoại Format Cells, chọn tab Number.
--> Trong danh sách ở bên trái, chọn Currency hoặc Custom.
--> Trong phần Symbol, chọn ký hiệu tiền tệ mong muốn (trong trường hợp này là ₫ cho đồng Việt Nam).
--> Thiết lập số chữ số sau dấu phẩy trong phần Decimal places nếu cần.
--> Nhấn OK để áp dụng.
Đặt D(x)=0
=>\(\left(x-4\right)\left(x^2+2\right)=0\)
mà \(x^2+2>0\forall x\)
nên x-4=0
=>x=4
a: Xét ΔAIB và ΔAID có
AB=AD
\(\widehat{IAB}=\widehat{IAD}\)
AI chung
Do đó: ΔAIB=ΔAID
b: Sửa đề; F là giao điểm của DE với AB
Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
=>EB=ED và \(\widehat{ABE}=\widehat{ADE}\)
Xét ΔADF và ΔABC có
\(\widehat{ADF}=\widehat{ABC}\)
AD=AB
\(\widehat{DAF}\) chung
Do đó: ΔADF=ΔABC
=>AF=AC
a) Khối lượng phân tử của nước là:
$2 \times 1u + 16u = 18u$
b) Khối lượng phân tử của nitơ là:
$2 \times 14u = 28u$
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
c: Ta có: ΔABE=ΔACD
=>\(\widehat{ABE}=\widehat{ACD}\)
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
=>\(\widehat{BDC}=\widehat{CEB}\)
Xét ΔIDB và ΔIEC có
\(\widehat{IDB}=\widehat{IEC}\)
DB=EC
\(\widehat{IBD}=\widehat{ICE}\)
Do đó: ΔIDB=ΔIEC
d: Ta có: ΔDIB=ΔEIC
=>IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
=>\(\widehat{IAB}=\widehat{IAC}\)
=>AI là phân giác của góc BAC
e: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI\(\perp\)BC
f: Xét ΔDEB có DE=DB
nên ΔDEB cân tại D
=>\(\widehat{DEB}=\widehat{DBE}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ABE}=\widehat{CBE}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giáckẻ từ B xuống AC của ΔABC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác kẻ từ C xuống AB của ΔABC
Ta có:
$13^1 = 13$
$13^2 = 169$
$13^3 = 2197$
$13^4 = 28561$
Quan sát các số trên, ta thấy:
--> Chữ số tận cùng của $13^1$ là 3.
--> Chữ số tận cùng của $13^2$ là 9.
--> Chữ số tận cùng của $13^3$ là 7.
--> Chữ số tận cùng của $13^4$ là 1.
=> chu kỳ của 2 chữ số tận cùng của lũy thừa 13 là 4: 39, 71, 13.
Gọi số mũ của lũy thừa này là n.
Ta có:
$n \equiv 1 \pmod 4$
Giải pt trên, ta có:
$n = 1 + 4k$ (với k là số tự nhiên)
=> Vậy, lũy thừa 13 có dạng $13^{1 + 4k}$ có 9 chữ số 0 tận cùng và 1 ở chữ số hàng đơn vị.