2 tất cả mn 1+1=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AF giao BC tại G. Theo ĐL Thales thì \(\frac{FA}{FG}=\frac{ED}{EB}=1\), suy ra F là trung điểm AG
Dễ thấy tam giác ABG cân tại B,do đó AG vuông góc BF
Đường thẳng AG: đi qua \(F\left(4;3\right)\), VTPT \(\overrightarrow{FB}=\left(1;-2\right)\)\(\Rightarrow AG:x-2y+2=0\)
Xét hệ \(\hept{\begin{cases}x+2y-18=0\\x-2y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\Rightarrow A\left(8;5\right)}\)
Vì F là trung điểm AG nên \(G\left(0;1\right)\)\(\Rightarrow\overrightarrow{GB}=\left(5;0\right)\)=> VTPT của BC là \(\left(0;1\right)\)
\(\Rightarrow BC:x-1=0\). Vậy \(d\left(O;BC\right)=1.\)
Trả lời : =0
Xin lỗi , mk chưa xem .
Hok_Tốt
#Thiên_Hy
\(VT=\text{Σ}\left(\frac{1}{a}-1\right)=\frac{b+c}{a}.\frac{c+a}{b}.\frac{a+b}{c}\)
\(\ge\frac{8\sqrt{a^2b^2c^2}}{abc}=8\)(cô - si)
Dấu "=" xảy ra khi a = b = c =\(\frac{1}{3}\))
123456789 + 123 = 123456912
HỌC TỐT
KB VỚI MÌNH NHA MỌI NGƯỜI
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:
\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)
\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)
\(sin\left(\frac{9\pi}{2}+\alpha\right)=sin\left(4\pi+\frac{\pi}{2}+\alpha\right)=sin\left(\frac{\pi}{2}+\alpha\right)=cos\alpha\)
2 nha
^^
1+1= 2
Chúc bạn học tốt