Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>AD=AE và BD=CE
Xét ΔAEM vuông tại E và ΔADM vuông tại D có
AM chung
AE=AD
Do đó: ΔAEM=ΔADM
=>ME=MD
b: ĐƯờng thẳng vuông góc với CE ở đâu vậy bạn?
c: Xét ΔMKE vuông tại K và ΔMHD vuông tại H có
ME=MD
\(\widehat{KME}=\widehat{HMD}\)(hai góc đối đỉnh)
Do đó: ΔMKE=ΔMHD
=>EK=HD và MK=MH
Xét ΔMKP vuông tại K và ΔMHP vuông tại H có
MK=MH
MP chung
Do đó: ΔMKP=ΔMHP
=>PH=PK
Ta có: ME+MC=EC
MD+MB=DB
mà ME=MD và EC=DB
nên MC=MB
Ta có: MK+KB=MB
MH+HC=MC
mà MK=MH và MB=MC
nên KB=HC
Xét ΔPKB vuông tại K và ΔPHC vuông tại H có
PK=PH
KB=HC
Do đó: ΔPKB=ΔPHC
=>PB=PC
=>P nằm trên đường trung trực của BC(1)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(2)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,M,P thẳng hàng
\(\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{4-x^2}\right)-\dfrac{2-x}{2+x}:\dfrac{-\left(x-1\right)}{2x-x^2}\)
\(=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}\right)+\dfrac{x-2}{x+2}:\dfrac{-\left(x-1\right)}{-x\left(x-2\right)}\)
\(=\dfrac{-\left(x+2\right)^2-4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\cdot\dfrac{x\left(x-2\right)}{x-1}\)
\(=\dfrac{-5x^2-4x-4}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{\left(-5x^2-4x-4\right)\left(x-1\right)+x\left(x-2\right)^3}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{-5x^3+5x^2-4x^2+4x-4x+4+x\left(x^3-6x^2+12x-8\right)}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{-5x^3+x^2+4+x^4-6x^3+12x^2-8x}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{x^4-11x^3+13x^2-8x+4}{\left(x-2\right)\left(x+2\right)\left(x-1\right)}\)
Bài 12:
a: ĐKXĐ: \(x\notin\left\{3;2\right\}\)
b: Đặt \(A=\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}\)
\(=\dfrac{x+2}{x-3}\)
Thay x=13 vào A, ta được:
\(A=\dfrac{13+2}{13-3}=\dfrac{15}{10}=\dfrac{3}{2}\)
Bài 4:
1:
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}\)
\(=\dfrac{-10}{4}=-\dfrac{5}{2}\)
b: ĐKXĐ: \(x\notin\left\{-5;6\right\}\)
\(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)
\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)
\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)
2:
a: ĐKXĐ: x<>2
\(\dfrac{5x-10}{x^2+7}:\left(2x-4\right)\)
\(=\dfrac{5\left(x-2\right)}{x^2+7}:2\left(x-2\right)\)
\(=\dfrac{5\left(x-2\right)}{2\left(x-2\right)\left(x^2+7\right)}=\dfrac{5}{2\left(x^2+7\right)}\)
b: ĐKXĐ: \(x\notin\left\{-5;\dfrac{7}{3}\right\}\)
\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
\(=\left(x^2-25\right)\cdot\dfrac{3x-7}{2x+10}\)
\(=\left(x-5\right)\left(x+5\right)\cdot\dfrac{3x-7}{2\left(x+5\right)}\)
\(=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)
c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)
\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}\cdot\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)
\(=\dfrac{x}{3\left(x-1\right)}\)
A) Số chấm chia hết cho 2 có thể là: 2; 4; 6 nên có 3 khả năng xảy ra
Gọi A là biến cố "mặt xuất hiện của xúc xắc có số chấm chia hết cho 2"
⇒ P(A) = 3/6 = 1/2
Các số chia hết cho 2 ở trong mặt xúc xắc là :2,4,6
Số % để gieo trúng các mặt đó là:
100 : 6 x 3 = 50%
Vậy 50 % là trúng các mặt đó.
Gọi số ban đầu là \(\overline{ab}\)
Nếu đổi chỗ hàng chục và hàng đơn vị thì được một số mới lớn hơn số cũ 36 đơn vị nên \(\overline{ba}-\overline{ab}=36\)
=>10b+a-10a-b=36
=>-9a+9b=36
=>a-b=-4(1)
Chữ số hàng đơn vị hơn chữ số hàng chục là 4 đơn vị nên b-a=4
Do đó, ta có: b-a=4
=>b=a+4
=>\(\left(a;b\right)\in\left\{\left(1;5\right);\left(2;6\right);\left(3;7\right);\left(4;8\right);\left(5;9\right)\right\}\)
vậy: Các số cần tìm là 15;26;37;48;59
Câu 1: D
Câu 2: C
Câu 3: A
Câu 4: D
Câu 5: B
Câu 6: D
Câu 7: B
Câu 8: A
Câu 12:
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=15^2-9^2=144=12^2\)
=>AC=12(cm)
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
c: Ta có: \(\widehat{BDE}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
\(\widehat{BEH}+\widehat{HBE}=90^0\)(ΔBHE vuông tại H)
mà \(\widehat{HBE}=\widehat{ABD}\)
nên \(\widehat{BDE}=\widehat{BEH}\)
=>\(\widehat{ADE}=\widehat{AED}\)
=>ΔADE cân tại A
Ta có: ΔADE cân tại A
mà AI là đường trung tuyến
nên AI\(\perp\)DE
Xét ΔEIA vuông tại I và ΔEHB vuông tại H có
\(\widehat{IEA}=\widehat{HEB}\)(hai góc đối đỉnh)
Do đó: ΔEIA~ΔEHB
=>\(\dfrac{EI}{EH}=\dfrac{EA}{EB}\)
=>\(\dfrac{EI}{EA}=\dfrac{EH}{EB}\)
d: Xét tứ giác BAIH có \(\widehat{BHA}=\widehat{BIA}=90^0\)
nên BAIH là tứ giác nội tiếp
=>\(\widehat{BIH}=\widehat{BAH}\)
mà \(\widehat{BAH}=\widehat{C}\)
nên \(\widehat{BIH}=\widehat{C}\)
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\left(\dfrac{12}{9}=\dfrac{16}{12}=\dfrac{4}{3}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\widehat{HAB}=\widehat{HCA}\)
mà \(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
nên \(\widehat{HBA}+\widehat{HCA}=90^0\)
=>ΔABC vuông tại A
b:
Xét ΔHAB có
M,N lần lượt là trung điểm của HA,HB
=>MN là đường trung bình của ΔHAB
=>MN//AB
Ta có: MN//AB
AB\(\perp\)AC
Do đó: MN\(\perp\)AC
Xét ΔCAN có
NM,AH là các đường cao
NM cắt AH tại M
Do đó: M là trực tâm của ΔCAN
=>CM\(\perp\)AN
a: Ta có; ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100=10^2\)
=>BC=10(cm)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(AD=3\cdot1=3\left(cm\right)\)
b: Vì BD là phân giác trong tại B của ΔABC
và BD\(\perp\)BE
nênBE là phân giác ngoài tại B của ΔABC
Xét ΔABC có BE là phân giác ngoài tại B
nên \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)
mà \(\dfrac{AB}{BC}=\dfrac{DA}{DC}\)
nên \(\dfrac{EA}{EC}=\dfrac{DA}{DC}\)
=>\(EA\cdot DC=DA\cdot EC\)