\(\frac{a}{\sqrt{ab+b^2}}\)=\(\frac{\sqrt{2}a}{\sqrt{2b\left(b+a\right)}}\)>=\(\frac{2\sqrt{2}a^2}{3ab+a^2}\)tương tự
P.>= \(\frac{2\sqrt{2}\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\)=\(\frac{2\sqrt{2}\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\)=\(\frac{6\sqrt{2}\left(a+b+c\right)^2}{3\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\) >=\(\frac{6\sqrt{2}\left(a+b+c\right)^2}{4\left(a+b+c\right)^2}\) +\(\frac{3\sqrt{2}}{2}\)