Cho pt \(x^2-2x+m=0\) . Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn \(\frac{m^3-m^2+4m}{x_1^2+2x_2+m^2}+m^2+1\) đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(A=\sqrt{6+2\sqrt{8\sqrt{3}-10}}-\sqrt{7-\sqrt{3}}\)
=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\sqrt{\left(6+2\sqrt{8\sqrt{3}-10}\right)\left(7-\sqrt{3}\right)}\)
=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\sqrt{42-6\sqrt{3}+2\sqrt{\left(8\sqrt{3}-10\right)\left(7-\sqrt{3}\right)^2}}\)
=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\sqrt{42-6\sqrt{3}+2\sqrt{\left(8\sqrt{3}-10\right)\left(52-14\sqrt{3}\right)}}\)
=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\sqrt{\left(\sqrt{52-14\sqrt{3}}-\sqrt{8\sqrt{3}-10}\right)^2}\)
=> \(A^2=13+2\sqrt{8\sqrt{3}-10}-\sqrt{3}-2\left(\sqrt{52-14\sqrt{3}}+\sqrt{8\sqrt{3}-10}\right)\)
=>\(A^2=13-\sqrt{3}-2\sqrt{49-14\sqrt{3}+3}\)
=>\(A^2=13-\sqrt{3}-2\left(7-\sqrt{3}\right)=\sqrt{3}-1\)
=> \(A=\sqrt{\sqrt{3}-1}\)
Vậy \(A=\sqrt{\sqrt{3}-1}\)
Xin lỗi có vài dòng dài nên nó bị chuyển xuống dưới , bạn hiểu hộ mình nhé
ĐK \(ab\ge0\)
Ta có \(\left(a+b-c\right)^2=ab\)
Mà \(ab\le\frac{\left(a+b\right)^2}{4}\)
=> \(a+b-c\le\frac{a+b}{2}\)
=> \(c\ge\frac{a+b}{2}\ge\sqrt{ab}\)
=> \(\hept{\begin{cases}\frac{c}{a+b}\ge\frac{1}{2}\\\frac{c^2}{ab}\ge1\end{cases}}\)
Khi đó
\(P=\frac{c^2}{ab}+\frac{c^2}{a^2+b^2}+\frac{a+b-c}{a+b}\)
=> \(P=c^2\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)-\frac{c}{a+b}+1+\frac{c^2}{2ab}\)
=> \(P\ge\frac{c^2.4}{\left(a+b\right)^2}-\frac{c}{a+b}+1+\frac{1}{2}.1\)
=>\(P\ge\left(\frac{2c}{a+b}-1\right)^2+\frac{3c}{a+b}+\frac{1}{2}\ge0+\frac{3.1}{2}+\frac{1}{2}=2\)
Vậy \(MinP=2\) khi a=b=c
áp dụng công thức \(\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b\left(k-1\right)}\)(với k là thương của a chia cho b;r là số dư )
Vì a,b,c có vai trò bình đẳng
nên giả sử \(a\le b\le c\)
=> \(\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
=> \(1\le\frac{3}{a}\)
=> \(a\le3\)
Mà a là số nguyên tố
=>\(a\in\left\{2;3\right\}\)
+ a=2
\(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{2}{b}\)=> \(b\le4\)=> \(b\in\left\{2;3\right\}\)
Thay vào ta được c=6(loại)
+ a=3
=> \(\frac{2}{3}\le\frac{2}{b}\)=> \(b\le3\)=> \(b\in\left\{2;3\right\}\)
Thay vào được c=3
Vậy a=b=c=3
Tớ không vẽ hình được bạn tự vẽ nhé
a, Vì K thuộc đường tròn đường kính AB
=> AKB=90
Mà CHA=90
=> tứ giác AKNH nội tiếp
Vậy tứ giác AKNH nội tiếp
b,Vì 2 tiếp tuyến cắt nhau tại M
nên \(OM\perp AC\)
=>\(OM//CB\)
=> tam giác AMO đồng dạng tam giác HCB
=> ĐPCM
c, Tứ giác AMKI nội tiếp do AIM=AKM=90
KIC=AMK
MÀ AMK=KNC do AM song song CH
=> KIC=KNC
=> tứ giác KINC nội tiếp
=>KNI=KCI
Mà KCI=KBA
=> KNI=KBA
=> IN song song AB
Vậy IN song song AB
Mình không viết kí hiệu góc nên bạn thông cảm
Vì \(x_2\)là nghiệm của phương trình
=> \(x_2^2-5x_2+3=0\)
=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)
Khi đó
\(A=||x_1-2|-|x_2-2||\)
=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)
=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)
Mà A>0(đề bài)
=> A=1
Vậy A=1
trả lời:
1 + 1 = 2
Mình muốn kết bạn với bạn
~ Học tốt ~
Ta có \(\Delta'=1-m\ge0\)=>\(m\le1\)
Theo viet ta có
\(x_1+x_2=2\)
Vì x1 là nghiệm của phương trình
=> \(x_1^2=2x_1-m\)
Khi đó
\(P=\frac{m^3-m^2+4m}{2\left(x_1+x_2\right)+m^2-m}+m^2+1\)
\(=\frac{m\left(m^2-m+4\right)}{m^2-m+4}+m^2+1=m^2+m+1=\left(m+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(MinP=\frac{3}{4}\)khi \(m=-\frac{1}{2}\)(thỏa mãn \(x\le1\))