CMR : trong 51 số nguyên dương khác nhau không quá 100, tồn tại 2 số có tổng khác 101.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BD là phân giác của ABC và ADC
Xét ∆ADB ta có :
A + ABD + ADB = 180°
ABD + ADB = 180 - 85 = 95°
Mà 2ABD + 2ADB = 95°
=> ABC + ADC = 95 * 2 = 190°
Mà A + ABC + ADC + C = 360°
=> C = 360 - 85 - 190 = 85°
Hình thì bạn tự vẽ nhé !!
Ta có : \(\widehat{CID}=115^o\)
Tổng 2 \(\widehat{ICD}=\widehat{IDC}=65^o\)
Ta tính tổng 2 \(\widehat{C}\)và \(\widehat{D}\)là : \(65^o.2=130^o\)
2 \(\widehat{A}\)và \(\widehat{B}\)là 230o
Ta chỉ thấy có \(\widehat{A}=140^o\)và \(\widehat{B}=90^o\) thì mới phù hợp
Vậy .................
a) Ta có:
x + y = 3
=> ( x + y)2 = 9
=> x2 + 2xy + y2 = 9
=> 10 + 2xy = 9
=> 2xy = 9 - 10 = -1
=> xy = -1/2
Ta có:
x3 + y3 = (x + y)(x2 - xy + y2)
= 3.(10 + 1/2) = 63/2
b) Ta có: x + y = a
=> (x + y)2 = a2
=> x2 + 2xy + y2 = a2
=> b + 2xy = a2
=> xy = (a2 - b)/2
Ta có: x3 + y3 = (x + y)(x2 + xy + y2)
= a[b + (a2 - b )/2] = ab + (a3 - b)/2.
Làm b) công thức tổng quát luôn
x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2
Thay x^2+y^2=b vào ta được:
b+2xy=a^2 => xy=(a^2-b)/2
TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2
Ta có:
a)
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(=\left[\left(a+b+c\right)^2-2ab-2ac-2bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=4\left[ab+ac+bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2-8abc\left(a+b+c\right)-2a^2b^2-2b^2c^2-2a^2c^2\)
\(=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
b)\(=2\left(ab+bc+ac\right)^2-4\left(abbc+abca+bcca\right)\)
\(=2\left(ab+bc+ac\right)^2-4abc\left(a+b+c\right)=2\left(ab+bc+ac\right)^2\)
c) \(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=\frac{a^4+b^4+c^4+a^4+b^4+c^4}{2}\)
\(=a^4+b^4+c^4\)
Ta có:
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow2+2ab+2bc+2ca=0\)(theo bài ra a^2 + b^2 + c^2 = 2)
\(\Leftrightarrow ab+bc+ca=-1\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=-1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)
Vậy:\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=4-2-2\)
a) Vì M là trung điểm AB
=> AM = MB
Vì N là trung điểm BC
=> BN = NC
=> MN là đường trung bình ∆ABC
=> MN//AC
=> AMNC là hình thang (dpcm)
2) Vì AB = AD (gt)
=> ∆ABD cân tại A
=> ABD = ADB
Ta có AM = MB (cmt)
Q là trung điểm AD
=> AQ = QD
=> MQ là đường trung bình ∆ABD
=> QM//DB
=> QMBD là hình thang
Mà ABD = ADB (cmt)
= > QMBD là hình thang cân (dpcm)
Ta có :
x=99....90....025=99....90....025
| n số 9 ||n số 0|
Dễ thấy 10^n-1=999...910n−1=999...9( n chữ số 9 )
Ví dụ 10-1=910−1=9
10000-1=999910000−1=9999
......
\Rightarrow\left(10^n-1\right).10^{n+2}+25⇒(10n−1).10n+2+25
=10^n.10^{n+2}-10^{n+2}+25=10n.10n+2−10n+2+25
=10^{2n+2}-10.10^{n+1}+25=102n+2−10.10n+1+25
=\left(10^{n+1}\right)^2-2.5.10^{n+1}+5^2=(10n+1)2−2.5.10n+1+52
=\left(10^{n+1}-5\right)^2=(10n+1−5)2 là số chính phương.
Vậy ...
https://vi.scribd.com/document/323989515/50-%C4%91%E1%BB%81-thi-olympic-toan-2000-pdf
tham khảo ở link này (mình gửi cho)
Học tốt!!!!!!!!!!!!!
#)Giải :
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b=2a^2+2b^2\)
\(\Leftrightarrow2ab=a^2+b^2\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a=b\left(đpcm\right)\)
Ta có:\
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)và\(b^2\) nha bạn)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(a=b\)
Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
Thì \(a=b\)
Bạn có thể giải ngắn hơn nếu áp dụng BĐT Cauchy
Do \(a^2\ge0;b^2\ge0\)
suy ra áp dụng BĐT cauchy ta có
\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi và chỉ khi a=b)
\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)và\(b^2\) nha bạn)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
Dấu bằng xảy ra khi và chỉ khi \(a=b\)
Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
Thì \(a=b\)
Lấy tập hợp \(A=\left\{a_1;a_2;...;a_{51}\right\}\); \(1\le a_i\le100;a_i\inℕ^∗\)phân biệt
Không mất tính tổng quát: G/S: \(a_1< a_2< ...< a_{51}\)
Theo điều giả sử trên ta có: \(a_1+a_2=51;a_1+a_3=51\)
=> \(a_2=a_3\)vô lí vì \(a_2< a_3\)
Vậy phải tồn tại hai số có tổng khác 101
Khó hiểu.