K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Lấy tập hợp \(A=\left\{a_1;a_2;...;a_{51}\right\}\)\(1\le a_i\le100;a_i\inℕ^∗\)phân biệt

Không mất tính tổng quát: G/S: \(a_1< a_2< ...< a_{51}\)

Theo điều giả sử trên ta có: \(a_1+a_2=51;a_1+a_3=51\)

=> \(a_2=a_3\)vô lí vì \(a_2< a_3\)

Vậy phải tồn tại hai số có tổng khác 101

8 tháng 7 2019

Khó hiểu.

Vì BD là phân giác của ABC và ADC 

Xét ∆ADB ta có :

A + ABD + ADB = 180°

ABD + ADB = 180 - 85 = 95°

Mà 2ABD + 2ADB = 95°

=> ABC + ADC = 95 * 2 = 190° 

Mà A + ABC + ADC + C = 360°

=> C = 360 - 85 - 190 = 85°

Hình thì bạn tự vẽ nhé !!

Ta có : \(\widehat{CID}=115^o\)

Tổng 2 \(\widehat{ICD}=\widehat{IDC}=65^o\)

Ta tính tổng 2 \(\widehat{C}\)và \(\widehat{D}\)là : \(65^o.2=130^o\)

\(\widehat{A}\)và \(\widehat{B}\)là 230o 

Ta chỉ thấy có \(\widehat{A}=140^o\)và \(\widehat{B}=90^o\) thì mới phù hợp 

Vậy .................

7 tháng 7 2019

a) Ta có:

x + y = 3

=> ( x + y)2 = 9

=> x2 + 2xy + y2 = 9

=> 10 + 2xy = 9

=> 2xy = 9 - 10 = -1

=> xy = -1/2 

Ta có:

 x3 + y3 = (x + y)(x2 - xy + y2)

 = 3.(10 + 1/2) = 63/2

b) Ta có: x + y = a

=> (x + y)2 = a2

=> x2 + 2xy + y2 = a2

=> b + 2xy = a2

=> xy = (a2 - b)/2

Ta có:  x3 + y3 = (x + y)(x2 + xy + y2)

 = a[b + (a2 - b )/2] = ab + (a3 - b)/2.

7 tháng 7 2019

Làm b) công thức tổng quát luôn

x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2

Thay x^2+y^2=b  vào ta được:

b+2xy=a^2 => xy=(a^2-b)/2 

TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2

8 tháng 7 2019

Ta có: 

a) 

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=\left[\left(a+b+c\right)^2-2ab-2ac-2bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=4\left[ab+ac+bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2-8abc\left(a+b+c\right)-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

b)\(=2\left(ab+bc+ac\right)^2-4\left(abbc+abca+bcca\right)\)

\(=2\left(ab+bc+ac\right)^2-4abc\left(a+b+c\right)=2\left(ab+bc+ac\right)^2\)

c) \(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=\frac{a^4+b^4+c^4+a^4+b^4+c^4}{2}\)

\(=a^4+b^4+c^4\)

7 tháng 7 2019

Ta có:

\(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow2+2ab+2bc+2ca=0\)(theo bài ra a^2 + b^2 + c^2 = 2)

\(\Leftrightarrow ab+bc+ca=-1\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2=-1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=1\)

Vậy:\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=4-2-2\)

a) Vì M là trung điểm AB 

=> AM = MB 

Vì N là trung điểm BC 

=> BN = NC 

=> MN là đường trung bình ∆ABC 

=> MN//AC 

=> AMNC là hình thang (dpcm) 

2) Vì AB = AD (gt)

=> ∆ABD cân tại A 

=> ABD = ADB 

Ta có AM = MB (cmt)

Q là trung điểm AD 

=> AQ = QD 

=> MQ là đường trung bình ∆ABD 

=> QM//DB 

=> QMBD là hình thang 

Mà ABD = ADB (cmt)

= > QMBD là hình thang cân (dpcm)

7 tháng 7 2019

a) A = \(\left(10^{n+1}-5\right)^2\)

Ta có :

x=99....90....025=99....90....025

         | n số 9 ||n số 0|

Dễ thấy 10^n-1=999...910n−1=999...9( n chữ số 9 )

Ví dụ 10-1=910−1=9

10000-1=999910000−1=9999

......

\Rightarrow\left(10^n-1\right).10^{n+2}+25⇒(10n−1).10n+2+25

=10^n.10^{n+2}-10^{n+2}+25=10n.10n+2−10n+2+25

=10^{2n+2}-10.10^{n+1}+25=102n+2−10.10n+1+25

=\left(10^{n+1}\right)^2-2.5.10^{n+1}+5^2=(10n+1)2−2.5.10n+1+52

=\left(10^{n+1}-5\right)^2=(10n+1−5)2 là số chính phương.

Vậy ...

https://vi.scribd.com/document/323989515/50-%C4%91%E1%BB%81-thi-olympic-toan-2000-pdf

tham khảo ở link này (mình gửi cho)

Học tốt!!!!!!!!!!!!!

7 tháng 7 2019

#)Giải :

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b=2a^2+2b^2\)

\(\Leftrightarrow2ab=a^2+b^2\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)

\(\Leftrightarrow a=b\left(đpcm\right)\)

7 tháng 7 2019

Ta có:\

 \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)\(b^2\) nha bạn)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(a=b\)

Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)

Thì \(a=b\)

Bạn có thể giải ngắn hơn nếu áp dụng BĐT Cauchy

Do \(a^2\ge0;b^2\ge0\)

suy ra áp dụng BĐT cauchy ta có

\(a^2+b^2\ge2ab\)(dấu "=" xảy ra khi và chỉ khi  a=b)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)(cộng hai vế với \(a^2\)\(b^2\) nha bạn)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Dấu bằng xảy ra khi và chỉ khi \(a=b\)

Vậy khi \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)

Thì \(a=b\)