Bài 15: Hãy cho biêt gia trị của cac biểu thưc sau co phụ thuộc vào gia trị biên x hay không?
\(6)D=\left(3x+2\right)^2-\left(3x+2\right)\left(3x-2\right)-6x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiên thưc cần nhơ:
- Cac hằng đẳng thưc đã học, phep nhân đơn thưc - đa thưc.
- Cộng trừ cac đơn thưc đồng thưc
\(27x^2\left(x+1\right)-\left(3x+1\right)^3=-8\)
\(\Rightarrow27x^3+27x^2-27x^3-27x^2-9x-1=-8\)
\(\Rightarrow-9x-1=-8\)
\(\Rightarrow-9x=-7\)
\(\Rightarrow x=\frac{7}{9}\)
\(27x^2\left(x+1\right)-\left(3x+1\right)^3\)
\(27x^3+27^2-27x^3-27x^2-9x-1=-8\)
\(-9x-1=-8\)
\(-9x=-7\)
\(x=\frac{7}{9}\)
\(4x^2-81=0\)
\(\Rightarrow\left(2x\right)^2-9^2=0\)
\(\Rightarrow\left(2x-9\right).\left(2x+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-9=0\\2x+9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{2}\\x=-\frac{9}{2}\end{cases}}}\)
Vậy ...
\(4x^2-81=0\)
\(\Leftrightarrow\left(2x\right)^2-9^2=0\)
\(\Leftrightarrow\left(2x-9\right)\left(2x+9\right)=0\)
\(2x-9=0\)
\(2x=9\)
\(x=\frac{9}{2}\)
\(2x+9=0\)
\(2x=-9\)
\(x=-\frac{9}{2}\)
Ta có:\(\left(ay-bx\right)^2\ge0\Leftrightarrow a^2y^2-2axby+b^2x^2\ge0\)
\(\Leftrightarrow a^2y^2+b^2x^2\ge2abxy\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2y^2+b^2x^2\ge a^2x^2+2abxy+b^2y^2\)
\(\Leftrightarrow\left(a^2+b^2\right).\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
Vậy...
\(-\left(4x^2-6x+18\right)=-\left[\left(2x-3\right)^2+9\right]< 0\)
A = ( x - 2 )2 - ( 2x + 1 )2
A = x2 - 4x + 4 - 4x2 + 4x + 1
A = - 3x2 + 5
B = ( x - 2y )2 - ( x - 2y ) . ( 2y + x )
B = x2 - 4xy + 4y2 - ( 2xy + x2 - 4y2 - 2xy )
B = x2 - 4xy + 4y2 - 2xy - x2 + 4y2 + 2xy
B = 8y2 - 4xy
a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)
\(=\left(x^4-2x^3+5x^2-4x+4\right)+\left(x^2-4x+4\right)\)
\(=x^4-2x^3+6x^2-8x+8\)
\(=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)
\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)
\(x^4-9x^3+28x^2-36x+16\)
\(=x^4-x^3-8x^3+8x^2+20x^2-20x-16x+16\)
\(=\left(x^4-x^3\right)-\left(8x^3-8x^2\right)+\left(20x^2-20x\right)-\left(16x-16\right)\)
\(=x^3\left(x-1\right)-8x^2\left(x-1\right)+20x\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-2x^2-6x^2+12x+8x-16\right)\)
\(=\left(x-1\right)[x^2\left(x-2\right)-6x\left(x-2\right)+8\left(x-2\right)]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-4x-2x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)[x\left(x-4\right)-2\left(x-4\right)]\)
\(=\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)
\(a,5\left(x-2\right)\left(x+2\right)-5.x^{28}\)
\(=\left(5x-10\right)\left(x+2\right)-5x^{28}\)
\(=5x^2+10x-10x-20-5x^{28}\)
\(=5x^2-2x-5x^{28}\)
\(b,\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2\)
a) 5(x - 2)(x + 2) - 5.x28
= 5(x2 - 4) - 5.x28
= 5.x2 - 5.4 - 5.x2
= 5x2 - 20 - 5x28
= -5x28 + 5x2 - 20
b) (a - b)2 + 4ab
= a2 - 2ab + b2 + 4ab
= a2 - 2ab + b2
\(D=\left(3x+2\right)^2-\left(3x+2\right)\left(3x-2\right)-6x\)
\(\Leftrightarrow D=\left(3x+2\right)\left(3x+2-3x+2\right)-6x\)
\(\Leftrightarrow D=4\left(3x+2\right)-6x\)
\(\Leftrightarrow D=12x+8-6x\)
\(\Leftrightarrow D=6x+8\)
Vậy giá trị của D phụ thuộc vào giá trị của biến x