a) 0,5+\(\frac{1}{3}\)+0,4+\(\frac{5}{7}\)+\(\frac{1}{6}\)-\(\frac{4}{35}\)
b)\(\frac{9}{8}-\frac{1}{72}-\frac{1}{36}-\frac{1}{42}-\frac{1}{30}-\)\(\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{2.1}\)
\(=\frac{1}{100}-\left(\frac{1}{99.100}+\frac{1}{98.99}+\frac{1}{97.98}+...+\frac{1}{1.2}\right)\)
\(=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}+\frac{1}{98}-\frac{1}{99}+\frac{1}{97}-\frac{1}{98}+...+1-\frac{1}{2}\right)\)
\(=\frac{1}{100}-\left(-\frac{1}{100}+1\right)\)
\(=\frac{1}{100}-\frac{99}{100}=-\frac{98}{100}=-\frac{49}{50}\)
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=\frac{-98}{100}=\frac{-49}{50}\)
\(B=\frac{1}{5}-\frac{3}{7}+\frac{5}{9}-\frac{2}{11}+\frac{7}{13}-\frac{9}{16}-\frac{7}{13}+\frac{2}{11}-\frac{5}{9}+\frac{3}{7}-\frac{1}{5}\)
\(=\frac{1}{5}-\frac{1}{5}-\frac{3}{7}+\frac{3}{7}+\frac{5}{9}-\frac{5}{9}-\frac{2}{11}+\frac{2}{11}+\frac{7}{13}-\frac{7}{13}-\frac{9}{16}\)
\(=0+0+0+0+0-\frac{9}{16}\)
\(=\frac{-9}{16}\)
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{9^{97}}+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=1-\frac{1}{3^{98}}\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{98}}}{2}\)
Nhầm một chút ==
\(3C-C=2C=1-\frac{1}{3^{99}}\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}\)
\(\frac{x+10}{30}+\frac{x+14}{43}+\frac{x+5}{95}+\frac{x+130}{5}=0\)
\(\Leftrightarrow\left(\frac{x+10}{30}+3\right)+\left(\frac{x+14}{43}+2\right)+\left(\frac{x+5}{95}+1\right)+\left(\frac{x+130}{5}-6\right)=0\)
\(\Leftrightarrow\frac{x+10+90}{30}+\frac{x+14+86}{43}+\frac{x+5+95}{95}+\frac{x+130-30}{5}=0\)
\(\Leftrightarrow\frac{x+100}{30}+\frac{x+100}{43}+\frac{x+100}{95}+\frac{x+100}{5}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{30}+\frac{1}{43}+\frac{1}{95}+\frac{1}{5}\right)=0\)
Vì \(\frac{1}{30}+\frac{1}{43}+\frac{1}{95}+\frac{1}{5}\ne0\)
=> x + 100 = 0
=> x = -100
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{1999}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right)...\left(-\frac{1998}{1999}\right)\)
\(=\frac{\left(-1\right)\left(-2\right)\left(-3\right)...\left(-1998\right)}{2\cdot3\cdot4\cdot...\cdot1999}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot1998}{2\cdot3\cdot4\cdot...\cdot1999}=\frac{1}{1999}\)
lếu lều ko nếu có thì ib mik nhá