chứng minh rằng :
\(9^4+27^3+3^6+111^2⋮37\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay \(ab=c^2\) vào\(\frac{a^2+c^2}{b^2+c^2}\)
\(\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\left(đpcm\right)\)
Từ\(ab=c^2\Rightarrow ab=cc\Rightarrow\frac{a}{c}=\frac{c}{b}\)
Đặt \(\frac{a}{c}=\frac{c}{b}=k\Rightarrow\hept{\begin{cases}a=ck\\c=bk\end{cases}}\)
Khi đó : \(\frac{a}{b}=\frac{ck}{b}=\frac{b.k^2}{b}=k^2\)(1) ;
\(\frac{a^2+c^2}{b^2+c^2}=\frac{c^2.k^2+c^2}{b^2.k^2+b^2}=\frac{c^2\left(k^2+1\right)}{b^2\left(k^2+1\right)}=\frac{c^2}{b^2}=\frac{b^2.k^2}{b^2}=k^2\)(2)
Từ (1) và (2) => đpcm
\(1=a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow2P=2a^2+2b^2+2c^2=\frac{2}{a+b+c}+2ab+2bc+2ca\)
\(\Rightarrow3P=3a^2+3b^2+3c^2=\frac{2}{a+b+c}+a^2+b^2+c^2+2ab+2bc+2ca\)
\(=\frac{1}{a+b+c}+\frac{1}{a+b+c}+\left(a+b+c\right)^2\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}=3\)
\(\Rightarrow P\ge1\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị.
min(!;1;1)
max (0;0;3)
Do vai trò của a, b, c là bình đẳng nên ta có thể giả sử \(a\ge b\ge c\)
*Tìm Min:
Cách 1:
Theo nguyên lí Dirichlet trong 3 số a -1; b-1; c-1 tồn tại ít nhất 2 số mà tích chúng không âm. Giả sử\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow abc\ge ca+bc-c\)
Từ đó \(P\ge a^2+b^2+c^2+ca+bc-c=a^2+b^2+c\left(a+b+c-1\right)\)
\(=\left(a^2+1\right)+\left(b^2+1\right)+2c-2\ge2\left(a+b+c\right)-2=4\)
Đẳng thức xảy ra khi \(a=b=c=1\)
*Tìm max:
\(P\le a^2+b^2+c^2+6abc\)
Ta sẽ chứng minh: \(a^2+b^2+c^2+6abc\le9=\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2\right)+18abc\le\left(a+b+c\right)^3\)
\(VP-VP=2\left[a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\right]\ge0\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị.
Giả sử z = min{x,y,z} \(\Rightarrow4=x+y+z+xyz\ge z^3+3z\Leftrightarrow\left(z-1\right)\left(z^2+z+4\right)\le0\Rightarrow z\le1\)(*)
Chọn t thỏa mãn \(\hept{\begin{cases}x+y+z+xyz=2t+z+t^2z\\2t+z+t^2z=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-2t=\left(t^2-xy\right)z\left(1\right)\\2t+z+t^2z=4\left(2\right)\end{cases}}\)
Giả sử \(t^2< xy\Rightarrow2t>x+y\ge2\sqrt{xy}\Rightarrow t^2>xy\) (mâu thuẫn với giả sử)
Vậy \(t^2\ge xy\Rightarrow x+y\ge2t\). Đặt P = f(a;b;c). Xét hiệu:
\(f\left(x;y;z\right)-f\left(t;t;z\right)=z\left(x+y-2t\right)-\left(t^2-xy\right)\)
\(=z^2\left(t^2-xy\right)-\left(t^2-xy\right)=\left(z^2-1\right)\left(t^2-xy\right)\le0\)
Vậy: \(P=f\left(x;y;z\right)\le f\left(t;t;z\right)=t^2+2tz\)
Từ \(\left(2\right)\Rightarrow z=\frac{\left(4-2t\right)}{t^2+1}.\text{Do }z\ge0\Rightarrow4-2t\ge0\Rightarrow t\le2\)
Mặc khác do (*): \(\Rightarrow4=2t+z+t^2z\le t^2+2t+1\Rightarrow\left(t+3\right)\left(t-1\right)\ge0\Rightarrow2\ge t\ge1\)
Vậy ta tìm max của: \(f\left(t;t;z\right)=f\left(t;t;\frac{4-2t}{t^2+1}\right)=t^2+\frac{2t\left(4-2t\right)}{t^2+1}\)
Dễ thấy hàm số này đồng biến suy ra \(f\left(t;t;\frac{4-2t}{t^2+1}\right)\) đạt max khi t = 2. Khi đó \(P=f\left(a;b;c\right)\le f\left(t;t;\frac{4-2t}{t^2+1}\right)\le4\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(2;2;0\right)\) và các hoán vị.
P/s: em hết cách rồi nên đành chơi kiểu này:(
a) \(\left(-\frac{5}{2}\right)^2:\left(-15\right)-\left(-0,45+\frac{3}{4}\right).\left(-1\frac{5}{9}\right)\)
= \(-\frac{25}{4}:\left(-15\right)-\left(\frac{9}{20}+\frac{15}{20}\right).\left(-\frac{14}{9}\right)\)
=\(-\frac{25}{4}.\frac{1}{-15}-\frac{6}{5}.\left(-\frac{14}{9}\right)\)
= \(\frac{-5}{12}-\frac{8}{5}\)
= \(\frac{\left(-25\right)-96}{60}\)
= \(\frac{\left(-25\right)+\left(-96\right)}{60}\)
=\(\frac{121}{60}\)
b) \(\left(\frac{-1}{3}\right)-\left(\frac{-3}{5}\right)^0+\left(1-\frac{1}{2}\right)^2:2\)
= \(\left(\frac{-1}{3}\right)-1+\left(\frac{1}{2}\right)^2.\frac{1}{2}\)
=\(\left(\frac{-1}{3}\right)-\frac{3}{3}+\frac{1}{4}.\frac{1}{2}\)
= \(\frac{-4}{3}+\frac{1}{8}\)=\(\frac{-32+3}{24}\)
=\(\frac{-29}{24}\)
c) E=\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{2^{10}.3^8-2.6^9}{2^{10}.3^8+6^8.20}\)
=\(\frac{3}{5}\)
d)\(\frac{5^4.20^4}{25^5.4^5}\)
=\(\frac{\left(5.20\right)^4}{\left(25.4\right)^5}\)
=\(\frac{100^4}{100^5}\)
=\(\frac{1}{100}\)
a) 12. \(\frac{4}{9}\)+\(\frac{4}{3}\)=\(\frac{16}{3}\)+\(\frac{4}{3}\)=\(\frac{20}{3}\)
b) (\(\frac{-5}{7}\)) . (12,5+1,5)= (\(\frac{-5}{7}\)).14=-10
a) \(12.\left(-\frac{2}{3}\right)^2+\frac{4}{3}=12.\frac{4}{9}+\frac{4}{3}=\frac{16}{3}+\frac{4}{3}=\frac{20}{3}\)
b) \(12,5.\left(-\frac{5}{7}\right)+1,5.\left(-\frac{5}{7}\right)=-\frac{5}{7}.\left(12,5+1,5\right)=-\frac{5}{7}.14=-10\)
c) \(1:\left(\frac{2}{3}-\frac{3}{4}\right)^2=1:\left(-\frac{1}{12}\right)^2=1:\frac{1}{144}=1.144=144\)
d) \(15.\left(-\frac{2}{3}\right)^2-\frac{7}{3}=15.\frac{4}{9}-\frac{7}{3}=\frac{20}{3}-\frac{7}{3}=\frac{13}{3}\)
e) \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+\left(-1\right)^{2007}=\frac{1}{2}.8-\frac{2}{5}+\left(-1\right)=4-\frac{2}{5}-1=\frac{13}{5}\)
\(=\left(3^2\right)^4+\left(3^3\right)^3+3^6+\left(3.37\right)^2=\)
\(=3^8+3^9+3^6+3^2.37^2=3^6\left(3^2+3^3+1\right)+3^2.37^2\)
\(3^6.37+3^2.37^2=37\left(3^6+3^2.37\right)\) chia hết cho 37