Cho các số dương a,b,c,d. Chứng minh :
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne0\)
- Với \(x< 0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}+3>0\\\dfrac{1}{x}-3< 0\Rightarrow\left(\dfrac{1}{x}-3\right)\left(\sqrt{9x^2-6x+2}+3\right)< 0\end{matrix}\right.\)
\(\Rightarrow\) Phương trình vô nghiệm
- Với \(x\ge\dfrac{1}{3}\) tương tự ta có \(\dfrac{1}{x}-3\le0\Rightarrow\left\{{}\begin{matrix}VT>0\\VT\le0\end{matrix}\right.\) nên pt vô nghiệm
- Với \(0< x< \dfrac{1}{3}\)
\(\Rightarrow x\sqrt{x^2+1}+3x=\left(1-3x\right)\left(\sqrt{\left(1-3x\right)^2+1}+3\right)\)
Đặt \(1-3x=y>0\)
\(\Rightarrow x\sqrt{x^2+1}+3x=y\left(\sqrt{y^2+1}+3\right)\)
\(\Leftrightarrow x\sqrt{x^2+1}-y\sqrt{y^2+1}+3\left(x-y\right)=0\)
\(\Leftrightarrow\dfrac{x^2\left(x^2+1\right)-y^2\left(y^2+1\right)}{x\sqrt{x^2+1}+y\sqrt{y^2+1}}+3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\dfrac{\left(x+y\right)\left(x^2+y^2\right)+x+y}{x\sqrt{x^2+1}+y\sqrt{y^2+1}}+3\right)=0\) (1)
Do \(\dfrac{\left(x+y\right)\left(x^2+y^2\right)+x+y}{x\sqrt{x^2+1}+y\sqrt{y^2+1}}+3>0;\forall x;y>0\)
\(\left(1\right)\Leftrightarrow x-y=0\Leftrightarrow x-\left(1-3x\right)=0\)
\(\Rightarrow x=\dfrac{1}{4}\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-1\end{matrix}\right.\)
\(T=\dfrac{3\left|x_1-x_2\right|}{x_1^2x_2+x_1x_2^2}=\dfrac{3\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2\left(x_1+x_2\right)}=\dfrac{3\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2\left(x_1+x_2\right)}\)
\(=\dfrac{3\sqrt{\left(-3\right)^2-4.\left(-1\right)}}{-1.\left(-3\right)}=\sqrt{13}\)
\(P=x^2-x\left(15-x\right)+\left(15-x\right)^2=3x^2-45x+225\)
\(P=3x\left(x-9\right)+225\)
Do \(0\le x\le6\Rightarrow x-9< 0\Rightarrow3x\left(x-9\right)\le0\)
\(\Rightarrow P\le225\)
\(P_{max}=225\) khi \(\left(x;y\right)=\left(0;15\right)\)
\(P=3x^2-45x+162+63=3\left(9-x\right)\left(6-x\right)+63\)
Do \(x\le6\Rightarrow\left\{{}\begin{matrix}9-x>0\\6-x\ge0\end{matrix}\right.\) \(\Rightarrow3\left(9-x\right)\left(6-x\right)\ge0\)
\(\Rightarrow P\ge63\)
\(P_{min}=63\) khi \(\left(x;y\right)=\left(6;9\right)\)
Bài làm :
Ta có : \(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\dfrac{1}{xy}\ge\dfrac{4}{\left(x+y\right)^2}\left(1\right)\)
Áp dụng BĐT (1) ta có :
\(\dfrac{a}{b+c}+\dfrac{c}{d+a}=\dfrac{a^2+ad+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\dfrac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\left(2\right)\)
Tương tự : \(\dfrac{b}{c+d}+\dfrac{d}{a+b}\ge\dfrac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\left(3\right)\)
Cộng các về của các BĐT (2) và (3) ta được :
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2\left(2a^2+2b^2+2c^2+2d^2+2ad+2bc+2ab+2cd\right)}{\left(a+b+c+d\right)^2}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+d}+\dfrac{c}{d+a}+\dfrac{d}{a+b}\ge\dfrac{2[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2]}{\left(a+b+c+d\right)^2}=2B\)
Ta dễ dàng chứng minh được : \(B\ge1\)
Thật vậy :
\(\dfrac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(a+d\right)^2}{\left(a+b+c+d\right)^2}\ge1\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+d\right)^2+\left(d+a\right)^2\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
\(\Rightarrowđpcm\)
Dấu đằng thức xảy ra : \(\Leftrightarrow a=c;b=d\)
khó thế tui ko hỉu