K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vậy bác Nam nướng bao nhiều cái sai đề rồi bạn

13 tháng 12 2019

TH1 bác có 16 gói

TH2 bác có 8 gói

TH3 bác có 4 gói 

TH4 bác có 2 gói

TH5 bác có 1 gói

14 tháng 12 2019

Cô-si Engel :

\(P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}=\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{a+b+c+6}\)

\(\ge\frac{a+b+c+2.3\sqrt[3]{\sqrt{ab}.\sqrt{bc}.\sqrt{ac}}}{a+b+c+6}=\frac{a+b+c+6\sqrt[3]{abc}}{a+b+c+6}=\frac{a+b+c+6}{a+b+c+6}=1\)

20 tháng 12 2019

Nguyễn Linh Chi Thanks cô,e đổi biến lộn ạ:(

Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)

Ta có:

\(P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\)

\(=\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\)

\(=\frac{1}{1+\frac{2y}{x}}+\frac{1}{1+\frac{2z}{y}}+\frac{1}{1+\frac{2x}{z}}\)

\(=\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\)

\(=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)

Dấu "=" xảy ra tại \(a=b=c=1\)

13 tháng 12 2019

Theo Bunhiacopski ta luôn có:

\(\left(x-y\right)^2=\left[1\cdot x+\left(-\frac{1}{2}\right)\cdot2y\right]^2\le\left(1^2+\frac{1}{4}\right)\left(x^2+4y^2\right)=\frac{5}{2}\)

\(\Rightarrow\left|x-y\right|\le\frac{\sqrt{5}}{2}\left(đpcm\right)\)

13 tháng 12 2019

47,15

29,9

19,86

3,34

15,25

9,9

TRL:

34,5+12,65 = 47,15

21+8,9 = 29,9

7,86+12 = 29,86

6,4-3,14 = 3,26

25-9,75 = 14,25

18,9-9 =9,9

#HuyềnAnh#