Cho tam giác ABC có góc A=2 góc B và góc B=3 góc C
a, Tính góc A , B , C
b, Gọi E giao điểm của đường thẳng AB với tia phân giác của góc ngoài tại đỉnh C . Tính góc AEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x+1=80 ta đc:
\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)
\(=x^7-x^7-x^6+x^6+x^5+...+x^2+x+15\)
\(79+15=94\)
\(Ta \) \(có \) \(:\)
\(x = 79 \)\(\Rightarrow\)\(x + 1 = 80\)
\(Thay \) \(x + 1 = 80 \) \(vào \) \(P(x)\) \(ta\) \(được :\)
\(P ( x ) = x ^7 - ( x + 1 )x ^6 + ( x + 1 )x^5\)\(- ( x + 1 )x ^4\)\(+ ...+ ( x + 1 )x + 15\)
\(P ( x ) = x ^7 - x ^7- x^6 + x^6 + x^5 - x^ 5\)\(- x ^4 + x ^4 + ... - x^ 2 + x ^2 + x + 15\)
\(P ( x ) = x + 15\)
\(Thay x = 79 vào P ( x ) ta được :\)
\(P ( x ) = 79 + 15 = 94\)
Bài giải
Theo đề bài: x - 1 chia hết cho 23; x - 11 chia hết cho 19 và 1200 < x < 1400
Vì x - 1 chi hết cho 23; x - 11 chia hết cho 19
Suy ra x - 1 - 11 chia hết cho 23; 19
Mà x - 1 - 11 = x - (1 + 11) = x - 12 nên x - 12 chia hết cho 23; 19
Vì x - 12 chia hết cho 23; 19
Suy ra x - 12 \(\in\)BC (23; 19)
23 = 23
19 = 19
BCNN (23; 19) = 23.19 (dấu "." là dấu nhân) = 437
BC (23; 19) = B (437) = {0; 437; 874; 1311; 1748; ...}
Vì 1200 < x < 1400 nên x - 12 = 1311
x - 12 = 1311
x = 1311 + 12
x = 1323
Vậy x = 1323
Ta có : \(\left|2x+3\right| \ge2x+3 \forall x\)
\(\left|1-2x\right| \ge 1-2x \forall x\)
=> \(\left|2x+3\right|+\left|1-2x\right| \ge 2x+3+1-2x\)\(\forall x\)
=> \(\left|2x+3\right|+\left|1-2x\right| \ge 4\) mà \(\left|2x+3\right|+\left|1-2x\right| =3\)
=> vô lí
=> không tồn tại x
\(A=\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)
\(A=\sqrt{2-2\sqrt{2}.1+1}-\sqrt{4+2.2\sqrt{2}+2}\)
\(A=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(A=\left|\sqrt{2-1}\right|-\left|2+\sqrt{2}\right|\)
\(A=\sqrt{2}-1-2-\sqrt{2}\)|
\(A=-3\)
\(A=\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{2}-1-\left(2+\sqrt{2}\right)\)
\(=\sqrt{2}-1-2-\sqrt{2}\)
\(=-1-2\)
\(=-3\)
Kẻ HM vuông góc BC ( M thuộc BC )
\(\Delta BHM~\Delta BCD\left(g.g\right)\) \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BD}\Rightarrow BH.BD=BC.BM\) ( 1 )
\(\Delta CHM~\Delta CBE\left(g.g\right)\Rightarrow\frac{CH}{BC}=\frac{CM}{CE}\Rightarrow CH.CE=BC.CM\) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow BH.BD+CH.CE=BC\left(BM+CM\right)=BC^2\)