Cho P = 8x3 - 12x2 + 6x-1 / 4x2 - 4x +1
a)Tìm điêu kiện xác dịnh của P
b) Tính giá trị của biểu thức A tại x thỏa mãn: 2x2 + x = 0
c)Chứng minh rằng với mọi giá trị x nguyên thì P nguyên
d) Tìm giá trị của x để phân thức P có giá trị bằng 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A = | x + 2014 | + | x + 2015| + 2015\)
\(A = | x + 2014 | + | x + 2015 | + 2015 \)\(\ge\)
\(2015\)
\(Dấu " = " xảy \) \(ra\) \(\Leftrightarrow\)\(x + 2014 = 0 hoặc x + 2015= 0\)
\(\Leftrightarrow\)\(x = - 2014 hoặc x = - 2015\)
\(Min A = 2015\) \(\Leftrightarrow\)\(x = - 2014 hoặc x = - 2015\)
\(A=\left|x+2014\right|+\left|x+2015\right|+2015\)
\(=\left|x+2014\right|+\left|-x-2015\right|+2015\)
Ta có: \(\left|x+2014\right|+\left|-x-2015\right|\ge\left|x+2014-x-2015\right|=1\)
\(\Rightarrow\left|x+2014\right|+\left|-x-2015\right|+2015\ge2016\)
Dấu"="xảy ra \(\Leftrightarrow\left(x+2014\right)\left(-x-2015\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+2014\ge0\\-x-2015\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+2014< 0\\-x-2015< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-2014\\x\le-2015\end{cases}}\)hoặc \(\hept{\begin{cases}x< -2014\\x>-2015\end{cases}\left(loai\right)}\)
\(\Leftrightarrow-2014\le x\le-2015\)
Vậy \(A_{min}=2016\)\(\Leftrightarrow-2014\le x\le-2015\)
Ta có: A+B+C=180 độ
=> A+C=180 độ - B
=> A+C=180 độ - 80 độ= 100 độ
=> A + 10 độ + A = 100 độ
=> 2A = 100 độ - 10 độ = 90 độ
=> A= 90 độ : 2= 45 độ
=> C= 10 độ + 45 độ = 55 độ
Vậy A= 45 độ ; C = 55 độ
Diện tích tam giác có đáy là 3,5 dm và chiều cao là 7 dm là :
3,5x7:2=12,25(dm2)
Đáp số :12,25 dm2
Bài 4. Gọi x ∈ N* là số học sinh, ta có:
x = 12q1 + 5; x = 15q2 + 5; x = 18q3 + 5
⇒ ( x – 5) ⋮ 12; (x – 5) ⋮ 15; (x – 5) ⋮ 18
Vậy x – 5 chia hết cho BCNN(12, 15, 18)
Ta có: BCNN (12, 15, 18) = 180
Vì 300 < x < 400 ⇒ x – 5 = 360 ⇒ x = 365
\(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}\)
a) ĐKXĐ: x \(\ne\pm\frac{1}{2}\)
b) Theo đề bài ta có:
\(2x^2+x=0\)
\(\Rightarrow x\left(2x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{2}\left(Loại\right)\end{cases}}}\)
Thay x = 0 (thỏa mãn điều kiện) vào P ta có:
\(P=\frac{0-0+0-1}{0-0+1}=\frac{-1}{1}=-1\)
Vậy khi x = 0 thì P = -1
c) \(P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{\left(2x-1\right)^3}{\left(2x-1\right)^2}=2x-1\)
Để P \(\inℤ\Leftrightarrow2x-1\inℤ\)
Mà -1\(\inℤ;x\inℤ\Rightarrow-1⋮2x\)
\(\Rightarrow2x\inƯ\left(-1\right)=\left\{1;-1\right\}\)
Ta có bảng giá trị:
Vậy không có x thỏa mãn P \(\inℤ\)
d) Với x \(\ne\pm\frac{1}{2};P=2\)
\(\Leftrightarrow2x-1=2\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)thì \(P=2\)