Cho điểm M ngoài ( O; R) với OM = 2R. Kẻ tiếp tuyến MA, MB với đường tròn.
a) Chứng minh tam giác ABM là tam giác đều. Tính AB
b) MO cắt (O; R) tại C, chứng minh CAOB là hình thoi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta MCN\)và \(\Delta NDM\)có:
MN chung
\(\widehat{CMN}=\widehat{DNM}\left(gt\right)\)
CM = DM (gt)
=> \(\Delta MCN\)= \(\Delta NDM\)(c.g.c)
<=> CN = DM
4b
cho tam giác ABC cân tại B. Gọi Bx là tia phân giác của góc ngoài tại đỉnh B. Chứng minh Bx // AC.
Bài 1:
\(c.\) \(2x+1⋮x-1\)
\(\Leftrightarrow\left(2x-2\right)+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
Ta có bẳng sau:
\(x-1\) | \(-1\) | \(1\) | \(3\) | \(-3\) |
\(x\) | \(0\) | \(2\) | \(4\) | \(-2\) |
a)
Gọi C’ là trung điểm của OM.
Suy ra BC’ là đường trung tuyến
Suy ra tam giác OBC là tam giác đều : OB=OC’=BC’=R
Suy ra góc BOC’ =60 độ
Mà goc BAM = góc BOC’ = sđcung BA chia 2 = sđ cung BC’ ( do cung BC’=cung C’A);
Suy ra góc BAM=60 độ
Mà tam giác BAM là tam giác cân có MA=MB(tính chất hai tiếp tuyến cắt nhau)
Suy ra tam giác BAM là tam giác đều.
Do BAM là tam giác đều suy ra AB=MA=MB
Áp dụng định lí py-ta-go trong tam giác vuông ta có:
b)
ta thấy điểm C trùng với C’
mà ta có OB=OA=AC’=BC’=R
suy ra tứ giác OBC’A là hình thoi
suy ra tứ giác OBCA là hình thoi