Cho a, b, c > 0 tm \(a^2+b^2+c^2=3\) . CMR:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4x-3m+1=0\)
Để (1) có 2 nghiệm phân biệt x1, x2 thì \(\Delta'=2^2-\left(3m+1\right)=-3m+3>0\)\(\Leftrightarrow\)\(m< 1\)
a) pt (1) có 1 nghiệm âm => nghiệm còn lại dương => 2 nghiệm trái dấu => \(x_1x_2< 0\)
Vi-et: \(x_1x_2=1-3m< 0\)\(\Leftrightarrow\)\(m< \frac{1}{3}\)
b) pt có 2 nghiệm phân biệt \(\hept{\begin{cases}x_1=-2-\sqrt{3-3m}\\x_1=-2+\sqrt{3-3m}\end{cases}}\)
Dễ thấy \(x_1< x_2\) nên ta cần tìm m để \(x_2=-2+\sqrt{3-3m}< 2\)
\(\Leftrightarrow\)\(\sqrt{3-3m}< 4\)\(\Leftrightarrow\)\(m>\frac{-13}{3}\)
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
\(\Leftrightarrow\frac{\left(2-b\right)\left(2-c\right)+\left(2-c\right)\left(2-a\right)+\left(2-a\right)\left(2-b\right)}{\left(2-a\right)\left(2-b\right)\left(2-c\right)}\ge3\)\(\Leftrightarrow\frac{4-2b-2c+bc+4-2c-2a+ca+4-2a-2b+ab}{\left(4-2a-2b+ab\right)\left(2-c\right)}\ge3\)\(\Leftrightarrow\frac{12-4\left(a+b+c\right)+\left(ab+bc+ca\right)}{8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc}\ge3\)
\(\Leftrightarrow12-4\left(a+b+c\right)+\left(ab+bc+ca\right)\ge\) \(24-12\left(a+b+c\right)+6\left(ab+bc+ca\right)-3abc\)
\(\Leftrightarrow8\left(a+b+c\right)+3abc\ge12+5\left(ab+bc+ca\right)\)
Đặt \(a+b+c=p;ab+bc+ca=q;abc=r\)thì giả thiết trở thành \(p^2-2q=3\)hay \(4q-p^2=2q-3\)
và ta cần chứng minh \(8p+3r\ge12+5q\)
Theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\)hay \(3r\ge\frac{p\left(4q-p^2\right)}{3}=\frac{p\left(2q-3\right)}{3}\)(*)
Có \(p^2-2q=3\Rightarrow q=\frac{p^2-3}{2}\)(**)
Sử dụng hai điều kiện (*) và (**) ta đưa điều phải chứng minh về dạng \(8p+\frac{p\left(p^2-6\right)}{3}\ge12+\frac{5\left(p^2-3\right)}{2}\)
\(\Leftrightarrow\left(2p-3\right)\left(p-3\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi a = b = c = 1