Cho đường tròn (O) và đường thẳng d không di qua tâm O cắt đường tròn tại 2 điểm A và B. Gọi C là điểm thuộc đường thẳng d sao cho A nằm giữa B và C. Vẽ đường kính PQ vương góc với dây AB tại D. Tia CP cắt đường tròn (O) tại điểm thứ 2 là I, AB cắt IQ tại K
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khổ 4: Ước nguyện của tác giả và cảm xúc khi rời xa.
- Cảm xúc bộc lộ trực tiếp (thương trào nước mắt) diễn tả sự lưu luyến, nhớ thương.
- Điệp ngữ " muốn làm" : thể hiện ước nguyện chân thành, gần gũi, thiết tha, mãnh liệt.
- Làm con chim, đóa hoa, cây tre. Chúng đều là sự vật nhỏ bé, bình dị nhưng mang nhiều ý nghĩa => Muốn được ở mãi bên Bác - người cha già kính yêu của dân tộc Việt Nam.
- Hình ảnh cây tre trung hiếu ( nghệ thuật: nhân hóa, ẩn dụ): thể hiện lòng kính yêu, trung thành, biết ơn vô hạn cuat nhà thơ đối với Bác.
Mình không trả lời được, nhưng mình có thể hỏi thử xem mình ra câu này có đúng không nhé.
1.
c, \(A=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}=1+\dfrac{-2}{\sqrt{x}-2}\)
Để A là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}1+\dfrac{-2}{\sqrt{x}-2}\ge0\\1+\dfrac{-2}{\sqrt{x}-2}\inℤ\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x}-2}\le1\\\sqrt{x}-2\inƯ\left(-2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{-\sqrt{x}}{\sqrt{x}-2}\le0\\\sqrt{x}-2\in\left\{\pm1;\pm2\right\}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>4\\x\in\left\{0;1;9;16\right\}\end{matrix}\right.\)
\(\Rightarrow x\in\left\{9;16\right\}\)
Vậy...
Ta có M = 3 + 32 + 33 + 34 + ... + 318
= ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 317 + 318 )
= 3( 1 + 3 ) + 33( 1 + 3 ) + ... + 317( 1 + 3 )
= 3 . 4 + 33 . 4 + ... + 317 . 4
= 4( 3 + 33 + ... + 317 ) ⋮ 4
Vậy M ⋮ 4
Lại có M = 3 + 32 + 33 + 34 + ... + 318
= ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 316 + 317 + 318 )
= 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 317( 1 + 3 + 32 )
= 3 . 13 + 34 . 13 + ... + 317 . 13
= 13( 3 + 34 + ... + 317 ) ⋮ 13
Vậy M ⋮ 4 và 13
Câu 1:
\(C_2H_4+H_2O\underrightarrow{t^o,xt}C_2H_5OH\)
\(C_2H_5OH+O_2\underrightarrow{^{mengiam}}CH_3COOH+H_2O\)
\(CH_3COOH+C_2H_5OH⇌CH_3COOC_2H_5+H_2O\) (xt: H2SO4 đặc, to)
(4) \(Zn+2CH_3COOH\rightarrow\left(CH_3COO\right)_2Zn+H_2\)
Câu 2:
a, \(n_{C_2H_4}=\dfrac{8,96}{22,4}=0,4\left(mol\right)\)
PT: \(C_2H_4+H_2O\underrightarrow{^{t^o,xt}}C_2H_5OH\)
Theo PT: \(n_{C_2H_5OH}=n_{C_2H_4}=0,4\left(mol\right)\Rightarrow m_{C_2H_5OH}=0,4.46=18,4\left(g\right)\)
b, \(V_{C_2H_5OH}=\dfrac{18,4}{0,8}=23\left(ml\right)\)
⇒ Độ rượu = \(\dfrac{23}{23+150}.100\approx13,3^o\)
c, \(n_{CH_3COOH}=\dfrac{120}{60}=2\left(mol\right)\)
PT: \(CH_3COOH+C_2H_5OH⇌CH_3COOC_2H_5+H_2O\) (xt: H2SO4 đặc, to)
Xé tỉ lệ: \(\dfrac{2}{1}>\dfrac{0,4}{1}\), ta được CH3COOH dư.
Theo PT: \(n_{CH_3COOC_2H_5\left(LT\right)}=n_{C_2H_5OH}=0,4\left(mol\right)\)
Mà: H = 95%
\(\Rightarrow n_{CH_3COOH\left(TT\right)}=0,4.95\%=0,38\left(mol\right)\)
\(\Rightarrow m_{CH_3COOC_2H_5\left(TT\right)}=0,38.88=33,44\left(g\right)\)
Áp dụng BĐT Cauchy cho 3 số thực dương \(xy,yz,zx\), ta có \(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\). Do \(xy+yz+zx=3xyz\) nên\(3xyz\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow3\sqrt[3]{\left(xyz\right)^2}\left(\sqrt[3]{xyz}-1\right)\ge0\) \(\Leftrightarrow\sqrt[3]{xyz}\ge1\) \(\Leftrightarrow xyz\ge1\)
ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}xy=yz=zx\\xy+yz+zx=3xyz\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)
Ta có \(\dfrac{x}{1+y^2}=\dfrac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\dfrac{xy^2}{1+y^2}\ge x-\dfrac{xy^2}{2y}\)\(=x-\dfrac{xy}{2}\)
Tương tự, ta có \(\dfrac{y}{1+z^2}\ge y-\dfrac{yz}{2}\) và \(\dfrac{z}{1+x^2}\ge z-\dfrac{zx}{2}\). Từ đó suy ra \(\dfrac{x}{1+y^2}+\dfrac{y}{1+z^2}+\dfrac{z}{1+x^2}\ge x+y+z-\dfrac{xy+yz+zx}{2}\) \(=x+y+z-\dfrac{3}{2}xyz\) . Từ đây suy ra \(Q\ge x+y+z\ge\sqrt[3]{xyz}\ge1\). ĐTXR \(\Leftrightarrow x=y=z=1\).
Vậy GTNN của \(Q\) là \(1\) đạt được khi \(x=y=z=1\)
Dạ thưa thầy, chỗ kia con sửa là \(Q\ge x+y+z\ge3\sqrt[3]{xyz}\ge3\) ạ. GTNN của Q là 3 khi \(x=y=z=1\)