Cho tam giác ABC nhọn nội tiếp đường tròn ( O;12) AB =8cm , AC =15cm khi đó độ dài đường cao AH của tam giác ABC là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}n+8=a^2\left(1\right)\\n+1=b^2\left(2\right)\end{matrix}\right.\) \(\left(a>b;a,b\inℕ^∗\right)\)
\(\left(1\right)\Leftrightarrow n=a^2-8\)
Thay vào (2), ta có \(a^2-8+1=b^2\)\(\Leftrightarrow a^2-b^2=7\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=7\) (4)
Vì \(a,b\inℕ^∗\) nên \(a-b< a+b\) (5)
Từ (4) và (5) \(\Rightarrow\left\{{}\begin{matrix}a-b=1\\a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=3\end{matrix}\right.\) (nhận)
\(\Rightarrow n+1=b^2=3^2=9\)\(\Rightarrow n=8\) (nhận)
\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\m\left(2-my\right)-2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\2m-m^2y-2y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\-\left(m^2+2\right)y=1-2m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-my\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2-m\left(\dfrac{2m-1}{m^2+2}\right)\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m^2+4-2m^2+m}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{2m-1}{m^2+2}\end{matrix}\right.\)
Để \(x\ge0\) thì \(\dfrac{m+4}{m^2+2}\ge0\)
Vì \(m^2+2>0\) \(\Rightarrow m+4\ge0\Leftrightarrow m\ge-4\) (1)
Để \(y< 0\) thì \(\dfrac{2m-1}{m^2+2}< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \dfrac{1}{2}\) (2)
Từ (1) và (2) \(\Rightarrow-4\le m< \dfrac{1}{2}\)
Vậy để hpt đã cho có nghiệm thỏa mãn yêu cầu đề bài thì \(-4\le m< \dfrac{1}{2}\)
Dễ thấy tứ giác BCEF nội tiếp (vì có 2 đỉnh E, F cùng nhìn đoạn BC dưới 1 góc 90o không đổi)
\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) (góc ngoài tại 1 đỉnh = góc trong ở đỉnh đối)
hay \(\widehat{AEM}=\widehat{ABC}\) (1)
Xét (O) có \(\widehat{AEM}\) là góc có đỉnh bên trong đường tròn chắn \(\stackrel\frown{AM}\) và \(\stackrel\frown{CN}\) \(\Rightarrow\widehat{AEM}=\dfrac{sđ\stackrel\frown{AM}+sđ\stackrel\frown{CN}}{2}\) (2)
Lại có \(\widehat{ABC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\) \(\Rightarrow\widehat{ABC}=\dfrac{sđ\stackrel\frown{AC}}{2}\)\(=\dfrac{sđ\stackrel\frown{AN}+sđ\stackrel\frown{CN}}{2}\) (3)
Từ (1) và (2) \(\Rightarrow\dfrac{sđ\stackrel\frown{AM}+sđ\stackrel\frown{CN}}{2}=\dfrac{sđ\stackrel\frown{AN}+sđ\stackrel\frown{CN}}{2}\Rightarrow\stackrel\frown{AM}=\stackrel\frown{AN}\)\(\Rightarrow AM=AN\) (đpcm)
Lời giải:
Do có 3 số $a,b,c$ nên kiểu gì cũng tồn tại 2 số nằm cùng phía so với $2$
Giả sử 2 số đó là $a,b$. Khi đó: $(a-2)(b-2)\geq 0$
$\Leftrightarrow ab+4\geq 2(a+b)$
$\Rightarrow abc+4c\geq 2(ac+bc)$. Khi đó:
$a^2+b^2+c^2+abc+4=a^2+b^2+c^2+abc+4c+4-4c$
$\geq 2ab+c^2+2(ac+bc)+4-4c$ (AM-GM)
$=2(ab+bc+ac)+(c-2)^2\geq 2(ab+bc+ac)$
Ta có đpcm.
ĐKXĐ \(\left\{{}\begin{matrix}x\ne-1\\y\ne1\end{matrix}\right.\)
Giả sử \(x>-1\) và \(y>1\), khi đó \(x+1>0\) và \(y-1>0\)
Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\), ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y-1}\ge\dfrac{4}{x+1+y-1}=\dfrac{4}{x+y}\)
Dấu "=" xảy ra khi \(x+1=y-1\Leftrightarrow y=x+2\)
Thay vào pt thứ 2, ta có \(\dfrac{2}{x+1}-\dfrac{3}{2x-1}=1\)
\(\Leftrightarrow\dfrac{2\left(2x-1\right)-3\left(x+1\right)}{\left(x+1\right)\left(2x-1\right)}=1\)\(\Leftrightarrow\dfrac{4x-2-3x-3}{2x^2-x+2x-1}=1\)\(\Leftrightarrow\dfrac{x-5}{2x^2+x-1}=1\)\(\Rightarrow2x^2+x-1=x-5\Leftrightarrow2x^2=-4\) (vô lí)
Do đó ta loại trường hợp \(\left\{{}\begin{matrix}x>-1\\y>1\end{matrix}\right.\), tức cả 2 điều này không thể xảy ra cùng lúc.
Xét trường hợp \(\left\{{}\begin{matrix}x< -1\\y< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1< 0\\y-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\left(x+1\right)>0\\-\left(y-1\right)>0\end{matrix}\right.\)
Từ đó \(\dfrac{1}{x+1}+\dfrac{1}{y-1}=-\left(\dfrac{1}{-x-1}+\dfrac{1}{1-y}\right)\)
Ta có \(\dfrac{1}{-x-1}+\dfrac{1}{1-y}\ge\dfrac{4}{-x-1+1-y}=-\dfrac{4}{x+y}\)\(\Leftrightarrow-\left(\dfrac{1}{-x-1}+\dfrac{1}{1-y}\right)\le\dfrac{4}{x+y}\)\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{1}{y-1}\le\dfrac{4}{x+y}\)
Dấu "=" xảy ra khi \(-x-1=1-y\Leftrightarrow y=x+2\)
Tương tự như trường hợp trên, ta thay vào pt (2) và loại trường hợp \(\left\{{}\begin{matrix}x< -1\\y< 1\end{matrix}\right.\)
Ta có thể kết luận rằng \(x+1\) và \(y-1\)phải trái dấu
\(\Rightarrow\left(x+1\right)\left(y-1\right)< 0\Leftrightarrow xy-x+y-1< 0\)
Đặt \(\left\{{}\begin{matrix}a=x+1\\b=y-1\end{matrix}\right.\) (điều kiện \(ab< 0\)), hpt đã cho trở thành \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{4}{a+b}\\\dfrac{2}{a}-\dfrac{3}{b}=1\end{matrix}\right.\), xét \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{4}{a+b}\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{4}{a+b}\Leftrightarrow\left(a+b\right)^2=4ab\)\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Leftrightarrow a=b\)\(\Leftrightarrow ab>0\) (trái với \(ab< 0\))
Vậy hpt đã cho vô nghiệm.
ĐKXĐ : x \(\ge-1\)
\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)
<=> \(x^3+3x^2\sqrt{x+1}-4\left(x+1\right)\sqrt{x+1}=0\)
<=> \(x^3+3x^2\sqrt{x+1}-4\left(\sqrt{x+1}\right)^3=0\)
<=> \(\left(x^3-x^2\sqrt{x+1}\right)+4\left[x^2\sqrt{x+1}-\left(\sqrt{x+1}\right)^3\right]=0\)
\(\Leftrightarrow x^2\left(x-\sqrt{x+1}\right)+4\sqrt{x+1}\left[x^2-\left(\sqrt{x+1}\right)^2\right]=0\)
<=> \(x^2\left(x-\sqrt{x+1}\right)+4\sqrt{x+1}\left(x-\sqrt{x+1}\right)\left(x+\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+1}\right)\left(x^2+4x\sqrt{x+1}+4x+4\right)=0\)
<=> \(\left(x-\sqrt{x+1}\right)\left(x+2\sqrt{x+1}\right)^2=0\)
<=> \(\left[{}\begin{matrix}x=\sqrt{x+1}\left(1\right)\\x=-2\sqrt{x+1}\left(2\right)\end{matrix}\right.\)
Giải (1) ta có \(x=\sqrt{x+1}\Leftrightarrow\left\{{}\begin{matrix}x^2=x+1\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+1}{2}\\x=\dfrac{1-\sqrt{5}}{2}\left(\text{loại}\right)\end{matrix}\right.\\x\ge0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\sqrt{5}+1}{2}\)
Giải (2) ta có : \(x=-2\sqrt{x+1}\Leftrightarrow\left\{{}\begin{matrix}x^2-4x-4=0\\x\ge-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{8}+2\\x\ge-1\end{matrix}\right.\Leftrightarrow x=\sqrt{8}+2\)
\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\left(đk:x\ge-1\right)\)
\(\Leftrightarrow x^3+3x^2\sqrt{x+1}-4\left(x+1\right)\sqrt{x+1}=0\)
\(\Leftrightarrow x^3+3x^2\sqrt{x+1}-4\sqrt{x+1}^3=0\left(1\right)\)
\(TH:x=-1\Rightarrow\left(1\right)\Leftrightarrow-1=0\left(ktm\right)\)
\(TH:x>-1\Rightarrow\left(1\right)\Leftrightarrow\left(\dfrac{x}{\sqrt{x+1}}\right)^3+3\left(\dfrac{x}{\sqrt{x+1}}\right)^2-4=0\)
\(đặt:\dfrac{x}{\sqrt{x+1}}=a\Rightarrow a^3+3a^2-4=0\Leftrightarrow\left(a+2\right)^2\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1=\dfrac{x}{\sqrt{x+1}}\Leftrightarrow\sqrt{x+1}=x\left(2\right)\\a=-2=\dfrac{x}{\sqrt{x+1}}\Leftrightarrow2\sqrt{x+1}=-x\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{5}}{2}\)
\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x\le0\\4\left(x+1\right)=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< x\le0\\\left[{}\begin{matrix}x=2+2\sqrt{2}\\x=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{2}\)
Gọi số có 2 chữ số ban đầu là \(\overline{ab}\left(a\ne0\right)\)
Ta có \(a+b=9\)
Khi đổi chỗ 2 chữ số ta được số mới là \(\overline{ba}\)
Ta có: \(\overline{ab}-\overline{ba}=27\Rightarrow\left(10a+b\right)-\left(10b+a\right)=27\)
\(\Rightarrow9a-9b=27\Rightarrow a-b=3\)
Ta có hệ phương trình: \(\left\{{}\begin{matrix}a+b=9\\a-b=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=6\\b=3\end{matrix}\right.\)
Vậy số cần tìm là 63.
Kẻ đường kính AD của (O). Ta thấy ngay \(AD=2R=2.12=24\left(cm\right)\)
Xét (O) có đường kính AD nên \(\widehat{ACD}\) là góc nội tiếp chắn nửa đường tròn \(\Rightarrow\widehat{ACD}=90^o\)
Lại có \(\widehat{ABC}\) và \(\widehat{ACD}\) là các góc nội tiếp cùng chắn \(\stackrel\frown{AC}\)
\(\Rightarrow\widehat{ABC}=\widehat{ACD}\) hay \(\widehat{ABH}=\widehat{ACD}\)
\(\Delta ABH\) và \(\Delta ADC\) có \(\widehat{AHB}=\widehat{ACD}\left(=90^o\right)\) và \(\widehat{ABH}=\widehat{ACD}\) (cmt)
\(\Rightarrow\Delta ABH~\Delta ABC\left(g.g\right)\)\(\Rightarrow\dfrac{AB}{AD}=\dfrac{AH}{AC}\Rightarrow AH=\dfrac{AB.AC}{AD}=\dfrac{8.15}{24}=5\left(cm\right)\)
Vậy \(AH=5cm\)