K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2022

Gọi O là tâm đáy \(\Rightarrow\) O là trung điểm BD và AC

Trong mp ((SAC), nối SO cắt AM tại I

\(\Rightarrow I=AM\cap\left(SBD\right)\)

Ta có M là trung điểm SC, O là trung điểm AC

\(\Rightarrow\) I là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{IA}{AM}=\dfrac{2}{3}\Rightarrow\dfrac{MA}{IA}=\dfrac{3}{2}\)

NV
20 tháng 12 2022

Số phần tử của S là: \(8!\)

Gọi tổng 4 chữ số sau là S \(\Rightarrow\) tổng 4 chữ số đầu là \(S+2\)

Ta có: \(S+S+2=1+3+4+5+6+7+8+9\)

\(\Rightarrow2S=41\Rightarrow S=\dfrac{41}{2}\) (vô lý do các chữ số đều nguyên)

Vậy đề bài sai

VT
19 tháng 12 2022

1) \(\left(1+x\right)^6=\sum\limits^6_{k=0}C^k_6x^k\)

Số hạng chứa \(x^4\) có \(k=4\)

Hệ số của \(x^4\) trong khai triển là: \(C_6^4=15\).

2) 

\(n\left(\Omega\right)=C_{20}^2=190\)

A: "Hai quả được chọn khác màu"

\(\overline{A}\): "Hai quả được chọn cùng màu".

\(n\left(\overline{A}\right)=C_{15}^2+C_5^2=115\)

\(n\left(A\right)=190-115=75\)

\(P\left(A\right)=\dfrac{75}{190}=\dfrac{15}{38}\)

19 tháng 12 2022

giúp mk vs ạ

 

19 tháng 12 2022

Vì các bạn nữ luôn ngồi gần nhau nên ta coi 4 bạn nữ là x 
=> Có 4! cách xếp x

số cách xếp 5 học sinh nam và x là : 
6!.4! = 17280 (cách)

I. Cho cấp số cộng (un) thỏa mãn u2 + u3 + u5 = 17 và u6 - 2u1 = 9. Tìm u1 và công sai của cấp số cộng đã cho. II. Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn AD và AD = 2BC. Gọi O là giao điểm của AC và BD; G là trọng tâm tam giác △SBD. 1. Chứng minh AD // (SBC) 2. Chứng minh OG // (SAB) III. 1. Tìm số hạng không chứa x trong khai triển \(\left(x+\dfrac{2}{x}\right)^8\). 2. Một tổ có 9 học sinh gồm 5 học sinh nam và 4 học...
Đọc tiếp

I. Cho cấp số cộng (un) thỏa mãn u2 + u3 + u5 = 17 và u6 - 2u1 = 9. Tìm u1 và công sai của cấp số cộng đã cho.

II. Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn AD và AD = 2BC. Gọi O là giao điểm của AC và BD; G là trọng tâm tam giác △SBD.

1. Chứng minh AD // (SBC)

2. Chứng minh OG // (SAB)

III.

1. Tìm số hạng không chứa x trong khai triển \(\left(x+\dfrac{2}{x}\right)^8\).

2. Một tổ có 9 học sinh gồm 5 học sinh nam và 4 học sinh nữ, trong đó có 2 học sinh nam tên Phúc và Đức. Xếp ngẫu nhiên 9 học sinh trên thành một hàng ngang. Có bao nhiêu cách xếp sao cho hai học sinh Phúc và Đức luôn đứng cạnh nhau, đồng thời các học sinh nam còn lại không đứng cạnh nhau và cũng không đứng cạnh Đức và Phúc?

Giải giúp mình nhé. Help!!!

1
17 tháng 12 2022

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

I. Giải các phương trình sau: 1. cos2x = \(\dfrac{\sqrt{2}}{2}\) 2. \(\sqrt{3}\) cos3x - sin3x = -1 II. Có 7 cái áo đẹp và 5 cái quần đẹp khác nhau. Hỏi có bao nhiêu cách chọn bộ quần áo để đi dự sinh nhật? III. Có 12 học sinh ưu tú, trong đó có An và Bình. Cần chọn ra 4 học sinh để đi dự đại hội học sinh ưu tú toàn quốc. Tính xác suất để An và Bình không cùng...
Đọc tiếp

I. Giải các phương trình sau:

1. cos2x = \(\dfrac{\sqrt{2}}{2}\)

2. \(\sqrt{3}\) cos3x - sin3x = -1

II. Có 7 cái áo đẹp và 5 cái quần đẹp khác nhau. Hỏi có bao nhiêu cách chọn bộ quần áo để đi dự sinh nhật?

III. Có 12 học sinh ưu tú, trong đó có An và Bình. Cần chọn ra 4 học sinh để đi dự đại hội học sinh ưu tú toàn quốc. Tính xác suất để An và Bình không cùng đi.

A. \(\dfrac{1}{11}\)

B. \(\dfrac{3}{7}\)

C. \(\dfrac{1}{6}\)

D. \(\dfrac{11}{10}\)

IV. Nghiệm của phương trình 2sin2x + cosx + 1 = 0 là:

A. x = \(\dfrac{\pi}{2}\) + k2π

B. x = π + k2π

C. x = \(\pm\) arccos\(\dfrac{3}{2}\) + k2π

D. x = kπ

V. Tập xác định của hàm số y = \(\dfrac{1-2sinx}{1-cosx}\) là:

A. D = R \ {π + k2π, k \(\in\) Z}

B. D = R

C. D = R \ {kπ, k \(\in\) Z}

D. D = D = R \ {k2π, k \(\in\) Z}

VI. Phương trình: sin3x = \(\dfrac{1}{2}\) có tập nghiệm trên đoạn [0; π] là:

A. \(\left\{\dfrac{7\pi}{18},\dfrac{5\pi}{18},\dfrac{13\pi}{18},\dfrac{17\pi}{18}\right\}\)

B. \(\left\{\dfrac{\pi}{18},\dfrac{5\pi}{18},\dfrac{13\pi}{18},\dfrac{17\pi}{18}\right\}\)

C. \(\left\{\dfrac{7\pi}{18},\dfrac{5\pi}{18},\dfrac{11\pi}{18},\dfrac{13\pi}{18}\right\}\)

D. \(\left\{\dfrac{\pi}{18},\dfrac{3\pi}{18},\dfrac{7\pi}{18},\dfrac{11\pi}{18}\right\}\)

giải giúp mình nhé

0
DD
12 tháng 12 2022

Ta có:

\(kC_n^k=k.\dfrac{n!}{k!\left(n-k\right)!}=\dfrac{n\left(n-1\right)!}{\left(k-1\right)!\left[n-1-\left(k-1\right)\right]!}=nC_{n-1}^{k-1}\)

Áp dụng ta được: 

\(C_n^1+2C_n^2+3C_n^3+...+nC_n^n\)

\(=n\left(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\right)\)

Mà ta lại có:

 \(2^{n-1}=\left(1+1\right)^{n-1}=C_{n-1}^0.1^0.1^{n-1-0}+C_{n-1}^1.1^1.1^{n-1-1}+...+C_{n-1}^{n-1}.1^{n-1}.1^0\)

\(=C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\)

Do đó ta có đpcm.