K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

Ap dụng bất đẳng thức Cauchy-Schwarz dạng Engel nhé bạn

\(N=\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+3\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}+\frac{27}{2\left(a+b+c\right)}=\frac{3}{2}+\frac{9}{2}=6\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

~ Đấng Ed :) ~ 

4 tháng 11 2018

a) \(x^2+8=3\sqrt{x^3+8}\)

\(\left(x^2+8\right)^2=\left(3\sqrt{x^2+8}\right)^2\)

\(x^4+16x^2+64=9x^2+72\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

4 tháng 11 2018

\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)

4 tháng 11 2018

gì vậy ạ

3 tháng 11 2018

Mình xin thua!