Đa thức P(x) chia cho x+1 dư 4, chia cho x+2 dư 1, chia cho x2+3x+2 được thương là 5x2 và còn dư. Tính P(-10)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+yz+zx=8xyz\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=8\)
\(\Rightarrow\dfrac{8}{x}+\dfrac{8}{y}+\dfrac{8}{z}=64\)
Ta có: \(\dfrac{8}{x}+\dfrac{8}{y}+\dfrac{8}{z}\)
\(=\left(\dfrac{1}{x}+...+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\left(\dfrac{1}{y}+...+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{x}\right)+\left(\dfrac{1}{z}+...+\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{1}{y}\right)\)
(sau dấu chấm là bốn số tương tự).
\(\ge^{Cauchy-Schwarz}\dfrac{8^2}{6x+y+z}+\dfrac{8^2}{6y+z+x}+\dfrac{8^2}{6z+x+y}\)
\(\Rightarrow64\ge\dfrac{8^2}{6x+y+z}+\dfrac{8^2}{6y+z+x}+\dfrac{8^2}{6z+x+y}\)
\(\Rightarrow\dfrac{1}{6x+y+z}+\dfrac{1}{6y+z+x}+\dfrac{1}{6z+x+y}\le1\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{3}{8}\)
Vậy \(Max\) của biểu thức đã cho là 1.
Ta có bất đẳng thức sau
a2 + b2 + c2 \(\ge\) ab + bc + ca (1)
Dấu "=" xảy ra <=> a = b = c
Thật vậy (1) <=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (bđt này luôn đúng)
Khi đó ta được (1) <=> 2(a2 + b2 + c2) \(\ge\) 2(ab + bc + ca)
<=> 3(a2 + b2 + c2) \(\ge\) 2ab + 2bc + 2ca + a2 + b2 + c2
<=> 3(a2 + b2 + c2) \(\ge\) (a + b + c)2
=> -(a2 + b2 + c2) \(\le\dfrac{(a+b+c)^2}{3}\)
Ta có \(P=\dfrac{b+c}{b+c-a}+\dfrac{c+a}{c+a-b}+\dfrac{a+b}{a+b-c}\)
\(=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}+3\)
\(=\dfrac{a^2}{ab+ac-a^2}+\dfrac{b^2}{ab+bc-b^2}+\dfrac{c^2}{ac+bc-c^2}+3\)
\(\ge\dfrac{\left(a+b+c\right)^2}{ab+ac-a^2+ab+bc-b^2+ac+bc-c^2}+3\) (BĐT Schwarz)
\(=\dfrac{\left(a+b+c\right)^2}{2ab+2ac+2bc-a^2-b^2-c^2}+3\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-2\left(a^2+b^2+c^2\right)}+3\)
\(\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2-\dfrac{2}{3}\left(a+b+c\right)^2}+3=\dfrac{1}{1-\dfrac{2}{3}}+3=6\) (đpcm)
B = x2 + 9y2 + 2011
= x2 + (3y)2 + 2011
= x2 + (5 - 2x)2 + 2011 (do 2x + 3y = 5)
= x2 + 4x2 - 20x + 25 + 2011
= 5x2 - 20x + 2036
= 5x2 - 20x + 20 + 2016
= 5(x2 - 4x + 4) + 2016
= 5(x - 2)2 + 2016 \(\ge2016\)
=> Min B = 2016 khi x - 2 = 0 <=> x = 2
khi đó y = \(\dfrac{1}{3}\)
Vậy Bmin = 2016 khi x = 2 ; \(y=\dfrac{1}{3}\)
- Định lí Bezout: Khi chia đa thức P(x) cho nhị thức \(x-a\) thì có số dư là \(P\left(a\right)\).
Áp dụng:
P(x) chia x+1 dư 4 \(\Rightarrow P\left(-1\right)=4\)
P(x) chia x+2 dư 1\(\Rightarrow P\left(-2\right)=1\)
Vì P(x) chia x2+3x+2 được thương là 5x2 nên ta có:
\(P\left(x\right)=\left(x^2+3x+2\right).5x^2+ax+b\left(1\right)\) (a,b là hằng số).
Thay \(x=-1\) vào (1) ta được:
\(P\left(-1\right)=\left(1^2-3.1+2\right).5.1^2-a+b=-a+b\)
\(\Rightarrow b-a=4\left(\cdot\right)\)
Thay \(x=-2\) vào (1) ta được:
\(P\left(-2\right)=\left(2^2-3.2+2\right).5.2^2-a.2+b\)
\(\Rightarrow b-2a=1\left(\cdot\cdot\right)\)
Từ (*), (**) ta có hệ: \(\left\{{}\begin{matrix}b-a=4\\b-2a=1\end{matrix}\right.\)
Giải ra ta được \(\left\{{}\begin{matrix}a=3\\b=7\end{matrix}\right.\)
Vậy \(P\left(x\right)=\left(x^2+3x+2\right).5x^2+3x+7\)
Thay \(x=-10\) vào P(x) ta được:
\(P\left(-10\right)=\left(10^2-3.10+2\right).5.10^2-3.10+7=35977\)
cho mình hỏi xíu là ở khúc cuối á bạn sao b-a=4 b-2a=1 ta lại suy ra đc a=3, b=7 vậy ạ,mình tính như thế nào á