Bài 3: Phân tich cac đa thưc sau thành nhân tử:
\(a)3x^2-15x^3\)
\(b)x\left(2x-3\right)+y\left(3-2x\right)\)
\(c)\left(5x-y\right)^2-4x^2\)
\(d)x^2-9y^2+4-4x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(25-4x^2+12xy-9y^2\)
\(=25-\left(2x-3y\right)^2\)
\(=\left(5-2x+3y\right)\left(5+2x-3y\right)\)
Bài làm
a) Xét tam giác CMN và tam giác CAB có:
Góc C chung
Góc M = góc A = 90o
=> tam giác CMN ~ tam giác CAB
=> \(\frac{CM}{CA}=\frac{MN}{AB}\Rightarrow CM.AB=MN.CA\) ( đpcm )
b) Cho tam giác ABC vuông tại A
=> AC2 = BC2 - AB2
=> AC2 = 152 - 92
=> AC2 = 225 - 81
=> AC2 = 144
=> AC = 12
Mà tam giác CMN ~ tam giác CAB
=> \(\frac{CM}{CA}=\frac{MN}{AB}\Rightarrow MN=\frac{CM.AB}{CA}=\frac{9.4}{12}=\frac{36}{12}=3\left(cm\right)\)
Vậy MN = 3 cm
c) Vì tam giác CMN ~ tam giác CAB
=> \(\frac{S_{\Delta CMN}}{S_{\Delta CAB}}=\left(\frac{MN}{AB}\right)^2=\left(\frac{3}{9}\right)^2=\frac{9}{81}=\frac{1}{9}\)
Vậy tỉ số của diện tích CMN và diện tích CAB =\(\frac{1}{9}\)
# Học tốt #
\(\text{a) }x^4+64\)
\(=x^4+16x^2+64-16x^2\)
\(=\left(x^4+16x^2+64\right)-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)
\(\text{b) }4x^4+81y^4\)
\(=4x^4+36x^2y^2+81y^4-36x^2y^2\)
\(=\left(4y^4+36x^2y^2+81y^4\right)-36x^2y^2\)
\(=\left(2x^2+9y^2\right)^2-\left(6xy\right)^2\)
\(=\left(2x^2+9y^2+6xy\right)\left(2x^2+9y^2-6xy\right)\)
a. x4 + 64
= (x2)2 + 2x28 + 82 - 2x28
= (x2 + 8)2 - (4x)2
= (x2 + 8 + 4x)(x2 + 8 - 4x)
b. 4x4 + 81y4
= (2x2)2 + (9y2)2
Làm tới đây bí rồi bạn! Mà hình như làm gì có công thức a2 + b2
\(a+b+c=0\Rightarrow\left(a+b+c\right)^3=0\)
\(\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3=0\)
\(a^3+b^3+3ab\left(a+b\right)+c^3=0\)
\(a^3+b^3+c^3+3ab\left(-c\right)=0\)
\(a^3+b^3+c^3=3abc\)
Ta có:\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+3c^2-3ab\right)\)
\(=0\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(dpcm\right)\)
\(\left|x^2-9\right|=\left|-7\right|\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-9=7\\x^2-9=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=16\\x^2=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\pm4\\x=\pm\sqrt{2}\end{cases}}\)
x2 + 6x - 16 > 2x - 7
<=> x2 + 6x - 2x > -7 + 16
<=> x2 + 4x > 9
<=> x2 + 4x + 4 > 9 + 4
<=> ( x + 2 )2 > 13
<=> ( x + 2 )2 > \(\left(\pm\sqrt{13}\right)^2\)
<=> \(\orbr{\begin{cases}x+2>\sqrt{13}\\x+2>-\sqrt{13}\end{cases}\Rightarrow}\orbr{\begin{cases}x>\sqrt{13}-2\\x>-2-\sqrt{13}\end{cases}}\)
Ta có: \(0\le\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)(1)
theo đề bài:
\(a^2+b^2+ab+bc+ac< 0\)
=> \(2\left(a^2+b^2+ab+bc+ac\right)< 0\)
=> \(2a^2+2b^2+2ab+2bc+2ac< 0\)(2)
Từ (1); (2) =>\(2a^2+2b^2+2ab+2bc+2ac< \) \(a^2+b^2+c^2+2ab+2bc+2ac\)
=> \(a^2+b^2< c^2\)
Thực hiện phép chia ta có:
Ta có: \(x^3-2x^2+7x-7=\left(x^2+3\right)\left(x-2\right)+4x-1\)
\(x^3-2x^2+7x-7\) chia hết cho \(x^2+3\)
=> \(4x-1⋮x^2+3\) (1)
=> \(4x^2-x=x\left(4x-1\right)⋮x^2+3\)
Mà: \(4x^2+12=4\left(x^2+3\right)⋮x^2+3\)
=> \(\left(4x^2-x\right)-\left(4x^2+12\right)⋮x^2+3\)
=> \(-x-12⋮x^2+3\)
=> \(x+12⋮x^2+3\)
=> \(4x+48⋮x^2+3\) (2)
Từ (1); (2) => \(\left(4x+48\right)-\left(4x-1\right)⋮x^2+3\)
=> \(49⋮x^2+3\)
=> \(x^2+3\in\left\{\pm1;\pm7;\pm49\right\}\) vì \(x^2+3\ge3\) với mọi x
=> \(\begin{cases}x^2+3=7\\x^2+3=49\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=46\left(loại\right)\end{cases}}\)
Với \(x^2=4\Rightarrow x=\pm2\) thử vào bài toán x=-2 loại. x=2 thỏa mãn
Vậy x=2
b) x(2x-3)-y(2x-3)
=>(x-y)(2x-3)
a) 3x2 - 15x3 = 3x2.( 1 - 5x )
b) x.( 2x - 3 ) + y.( 3 - 2x ) = x.( 2x - 3 ) - y.( 2x - 3 ) = ( 2x - 3 ).( x - y )
c) ( 5x - y )2 - 4x2 = ( 5x - y )2 - ( 2x )2 = ( 5x - y - 2x ).( 5x - y + 2x ) = ( 3x - y ).( 7x - y )
d) x2 - 9y2 + 4 - 4x = ( x2 - 4x + 4 ) - 9y2 = ( x - 2 )2 - ( 3y )2 = ( x - 2 - 3y ).( x - 2 + 3y )