X phần 6 = y phần 3 biết x×y =3 tìm x,y
Giải gấp giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x O y A C B D E
Ta có
OB=OA (gt); BD=AC (gt)
=> OB+BD=OA+AC => OD=OC
Xét tg AOD và tg BOC có
OD=OC (cmt); OA=OB (gt); \(\widehat{xOy}\) chung => tg AOD = tg BOC (c.g.c)
b/
Ta có tg AOD = tg BOC (cmt)
\(\Rightarrow\widehat{OAD}=\widehat{OBC}\)
\(\widehat{OAD}+\widehat{CAE}=\widehat{OAC}=180^o\)
\(\widehat{OBC}+\widehat{DBE}=\widehat{OBD}=180^o\)
\(\Rightarrow\widehat{OAC}=\widehat{OBD}\)
Xét tg EAC và tg EBD có
\(\widehat{OAC}=\widehat{OBD}\) (cmt)
tg AOD = tg BOC (cmt) \(\Rightarrow\widehat{ACE}=\widehat{BDE}\)
AC=BD (gt)
=> tg EAC = tg EBD (g.c.g)
c/
Xét tg OAE và tg OBE có
OA=OB (gt); OE chung
tg EAC = tg EBD (cmt) => AE=BE
=> tg OAE = tg OBE (c.c.c) \(\Rightarrow\widehat{xOE}=\widehat{yOE}\) => OE là phân giác góc \(\widehat{xOy}\)
Xét tg OCD có
OC=OD (cmt) => tg OCD cân tại O
\(\widehat{xOE}=\widehat{yOE}\) (cmt)
\(\Rightarrow OE\perp CD\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11
Do N là số dương nhỏ nhất
Nên N + 1 thuộc BCNN(2,3,7,11)
Mà BCNN(2,3,7,11) = 2.3.7.11 = 462
Hay N+1 = 462
=> N = 461
Theo bài ra, suy ra : N + 1 chia hết cho cả 2, 3, 7 và 11
Do N là số dương nhỏ nhất
Nên N + 1 thuộc BCNN(2,3,7,11)
Mà BCNN(2,3,7,11) = 2.3.7.11 = 462
Hay N+1 = 462
=> N = 461
Lời giải:
a. Đặt $y=kx$ với $k$ là hệ số tỉ lệ. $k$ cố định.
Có:
$\frac{1}{9}=y_2=kx_2=3k\Rightarrow k=\frac{1}{9}:3=\frac{1}{27}$
Vậy $y=\frac{1}{27}x$
$y_1=\frac{1}{27}x_1$
Thay $y_1=\frac{-3}{5}$ thì: $\frac{-3}{5}=\frac{1}{27}x_1$
$\Rightarrow x_1=\frac{-3}{5}: \frac{1}{27}=-16,2$
b. Đặt $y=kx$
$y_1=kx_1$
$\Rightarrow -2=k.5\Rightarrow k=\frac{-2}{5}$
Vậy $y=\frac{-2}{5}x$.
$\Rightarrow y_2=\frac{-2}{5}x_2$
Thay vào điều kiện $y_2-x_2=-7$ thì:
$\frac{-2}{5}x_2-x_2=-7$
$\Leftrightarrow \farc{-7}{5}x_2=-7\Leftrightarrow x_2=5$
$y_2=\frac{-2}{5}x_2=\frac{-2}{5}.5=-2$
\(A=\dfrac{3}{\sqrt{x+1}}\) (đk: x>-1)
Để A nguyên \(\Rightarrow\sqrt{x+1}\) phải là ước của 3
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
A = -1-\(\dfrac{1}{3}\)-\(\dfrac{1}{6}\)-\(\dfrac{1}{10}\)-\(\dfrac{1}{15}\)-...-\(\dfrac{1}{1225}\)
= -1-(\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+\(\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\))
Đặt B = \(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+\(\dfrac{1}{15}\)+...+\(\dfrac{1}{1225}\)
Ta có : B = 2(\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+\(\dfrac{1}{30}\)+...+\(\dfrac{1}{2450}\))
= 2(\(\dfrac{1}{2\text{×}3}\)+\(\dfrac{1}{3\text{×}4}\)+\(\dfrac{1}{4\text{×}5}\)+\(\dfrac{1}{5\text{×}6}\)+...+\(\dfrac{1}{49\text{×}50}\))
= 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\)
= 2(\(\dfrac{1}{2}\)-\(\dfrac{1}{50}\))
= 2×\(\dfrac{24}{50}\)
= \(\dfrac{24}{25}\)
Thay B vào A ta có :
A = -1-\(\dfrac{24}{25}\)
=> A = \(\dfrac{-49}{25}\)
Cho mik một tick nhé thankss
Đặt x/6 = y/3 = k
=> x=6k và y = 3k
Ta có : xy = 3
=> 18k^2 = 3
=> k^2 = 1/6
=> k = ±√1/6 = ±√6 / 6
Vậy (x;y) = (√6;√6 /2);(-√6;-√6 /2)