a/ Bác Tư gửi 500 triệu đồng vào ngân hàng BIDV theo hình thức có kì hạn với lãi suất 6% một năm. Hỏi sau 6 tháng bác Tư nhận được bao nhiêu tiền cả vốn và lãi?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2\(x+2x\) + 3 = 72
4\(x\) + 3 = 72
4\(x\) = 72 - 3
4\(x\) = 69
\(x\) = 69 : 4
Vậy \(x=\dfrac{69}{4}\)
P = 1 + 50 + 51 + 52 + 53 + ... + 5100
P = 1 + 1 + 5.( 1 + 5 + 52 + ... + 599)
Vì 1 + 5 + 52 + ... + 599 là tổng của 100 số lẻ nên tổng đó là số chẵn
⇒ 5.(1 + 5 + 52+ ... + 599) = \(\overline{..0}\) (tích của 5 với bất cứ thừa số chẵn nào cùng có tận cùng là 0)
Vậy P = 2 + \(\overline{..0}\)
P = \(\overline{...2}\)
Kết luận P = 1 + 50 + 51 + 52 + ... + 5100 Không phải là số chính phương vì số chính phương không thể có tận cùng là 2.
P = 1 + 50 + 51 + 52 + 53 + ... + 5100
TA CÓ :
P = 1 + 1 + 5.( 1 + 5 + 52 + ... + 599)
Vì 1 + 5 + 52 + ... + 599 là tổng của 100 số lẻ nên tổng đó là số chẵn
⇒ 5.(1 + 5 + 52+ ... + 599) = ..0‾..0 (tích của 5 với bất cứ thừa số chẵn nào cùng có tận cùng là 0)
Vậy P = 2 + ..0‾..0
P = ...2‾...2
Kết luận P = 1 + 50 + 51 + 52 + ... + 5100 Không phải là số chính phương vì số chính phương không thể có tận cùng là 2.
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{47.49}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{47.49}\right)\)
\(=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{47}-\dfrac{1}{49}\right)\)
\(=\dfrac{1}{2}.\left(1-\dfrac{1}{49}\right)\)
\(=\dfrac{1}{2}.\dfrac{48}{49}\)
\(=\dfrac{24}{49}\)
Giải:
Số học sinh Giỏi của lớp 6A là:
\(48\cdot\dfrac{1}{3}=16\left(\text{ học sinh}\right)\)
Số học sinh còn lại là:
\(48-16=32\left(\text{học sinh}\right)\)
Số học sinh Khá là:
\(32\cdot\dfrac{7}{8}=24\left(\text{học sinh}\right)\)
Số học sinh Trung bình là:
\(48-16-24=8\left(\text{học sinh}\right)\)
\(\text{Vậy }Lớp\text{ }6A\text{ }\text{có}:16\text{ học sinh Giỏi};\text{ 28 học sinh Khá};\text{ 8 học sinh Trung bình}\)
Gọi số cần tìm có dạng là \(\overline{ab2}\)
\(\overline{ab2}⋮6\)
=>100a+10b+2\(⋮\)6
mà a,b là các số tự nhiên
và 0<a<=9 và 0<=b<=9
nên \(\left(a;b\right)\in\){(1;0);(1;4);(1;7);(2;2);(2;5);(2;8);(3;1);(3;4);(3;7);(4;0);(4;3);(4;6);(4;9);(5;2);(5;5);(5;8);(6;1);(6;4);(6;7);(7;0);(7;3);(7;6);(7;9);(8;2);(8;5);(8;8);(9;1);(9;4);(9;7)}
=>Có 29 số
Giải:
Các số có 3 chữ số mà tận cùng bằng 2 và chia hết cho 6 là các số:
102; 132; 162; 192;...; 972
Số các số có 3 chữ số có tận cùng bằng 2 và chia hết cho 6 là:
(972 - 102) : 30 + 1 = 30 (số)
Vậy có 30 số có 3 chữ số chia hết cho 6 và có tận cùng là 2.
Giải:
Vì a; b \(\in\) N và a + b = 126 nên 0 ≤ a ≤ 126
Các số lớn hơn hoặc bằng 0 và nhỏ hơn hoặc bằng 126 là các số thuộc dãy số sau:
0; 1; 2; 3; 4;...; 126
Dãy số trên có số số hạng là: (126 - 0): 1 + 1 = 127 (số)
Vậy a có 127 cách chọn
Kết luận có 127 cặp số tự nhiên (a; b) thỏa mãn a + b = 126
Bài 4:
\(1\dfrac{13}{15}\cdot\left(0,5\right)^2-3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right):1\dfrac{23}{24}\)
\(=\dfrac{28}{15}\cdot\dfrac{1}{4}-3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{15}-3+\dfrac{-47}{60}\cdot\dfrac{24}{47}\)
\(=\dfrac{-38}{15}+\dfrac{2}{5}=\dfrac{-38}{15}+\dfrac{6}{15}=-\dfrac{32}{15}\)
Bài 5:
\(B=\left(\dfrac{151515}{161616}+\dfrac{17^9}{17^{10}}\right)-\left(\dfrac{1500}{1600}-\dfrac{176}{187}\right)\)
\(=\left(\dfrac{15}{16}+\dfrac{1}{17}\right)-\dfrac{15}{16}+\dfrac{16}{17}\)
\(=\dfrac{1}{17}+\dfrac{16}{17}=\dfrac{17}{17}=1\)
Bài 6:
\(A=2^4\cdot5-\left[131-\left(13-4\right)^2\right]\)
\(=16\cdot5-131+9^2\)
=80-131+81
=80-50
=30
b: \(\left(p-1\right)\left(p+1\right)+3=p^2-1+3=p^2+2\)
TH1: p=3
\(p^2+2=3^2+2=9+2=11\)
=>Nhận
TH2: p=3k+1
\(p^2+2=\left(3k+1\right)^2+2=9k^2+6k+1+2\)
\(=9k^2+6k+3=3\left(3k^2+2k+1\right)⋮3\)
=>Loại
TH3: p=3k+2
\(p^2+2=\left(3k+2\right)^2+2=9k^2+12k+4+2\)
\(=9k^2+12k+6=3\left(3k^2+4k+2\right)⋮3\)
=>Loại
Vậy: p=3
a: 326 chia a dư 11
=>326-11 chia hết cho a và a>11
=>\(315⋮a\) và a>11(1)
467 chia a dư 17
=>467-17 chia hết cho a và a>17
=>\(450⋮a\) và a>17(2)
Từ (1),(2) suy ra \(a\inƯC\left(315;450\right)\) và a>17
=>\(a\inƯ\left(45\right)\)
mà a>17
nên a=45
1 năm=12 tháng
lãi suất 6 tháng là:
6:12*6=3 %
sau 6 tháng bác Tư nhận được:
500+(500*3%)=515(triệu đồng)
1 năm=12 tháng
lãi suất 6 tháng là:6:12.6=3 %
sau 6 tháng bác Tư nhận được:500+(500.3%)=515(triệu đồng)
(lưu ý dấu chấm là phép nhân )