K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7

a)5x+17-(2x+5)=0

=>5x+17-2x-5=0

=>3x+12=0

=>3x=-12

=>x=-12:3=-4

b)3(1-x)-(5-2x)=0

=>3-3x-5+2x=0

=>-2-x=0

=>x=-2

c)2(x-1)-3(x-2)=0

=>2x-2-3x+6=0

=>-x+4=0

=>x=4

d)(x-3)(2x-5)+(2x-4)(5-2x)=0

=>(x-3)(2x-5)-(2x-4)(2x-5)=0

=>(2x-5)(x-3-2x+4)=0

=>(2x-5)(1-x)=0

TH1: 2x - 5=0=>2x=5=>x=5/2

TH2: 1-x=0=>x=1

a: Đặt 5x+17-(2x+5)=0

=>\(5x+17-2x-5=0\)

=>\(3x+12=0\)

=>\(3x=-12\)

=>\(x=-\dfrac{12}{3}=-4\)

b: Đặt \(3\left(1-x\right)-\left(5-2x\right)=0\)

=>\(3-3x-5+2x=0\)

=>\(-x-2=0\)

=>x+2=0

=>x=-2

c: Đặt \(2\left(x-1\right)-3\left(x-2\right)=0\)

=>\(2x-2-3x+6=0\)

=>4-x=0

=>x=4

d: Sửa đề: (x-3)(2x-5)+(2x-4)*(5-x) 

Đặt \(\left(x-3\right)\left(2x-5\right)+\left(2x-4\right)\left(5-x\right)=0\)

=>\(2x^2-5x-6x+15+10x-2x^2-20+4x=0\)

=>3x-5=0

=>3x=5

=>\(x=\dfrac{5}{3}\)

Số hữu tỉ là \(\dfrac{5}{4};3\dfrac{2}{5};\dfrac{-2}{7};\dfrac{-13}{17};\dfrac{0}{3};\dfrac{-9}{-9};3,5;0;6,25\)

Số không là số hữu tỉ là \(\dfrac{3}{0}\)

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne1\end{matrix}\right.\)

\(\dfrac{2}{\sqrt{x}-1}+\dfrac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\dfrac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}\)

\(=\dfrac{2\left(x+\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{2x+2\sqrt{x}+2+2\left(x-1\right)+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{3x-8\sqrt{x}+5+2x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{5x-8\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(5\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)

2 tháng 7

\(\dfrac{2}{\sqrt{x}-1}+\dfrac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\dfrac{x-10\sqrt{x}+3}{\sqrt{x^3}-1}\left(x\ne1,x>=0\right)\\ =\dfrac{2}{\sqrt{x}-1}+\dfrac{2\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}+\dfrac{x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{2\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{2x+2\sqrt{x}+2+2\left(x-1\right)+x-10\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{5x-8\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{5x-5\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(5\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\\ =\dfrac{5\sqrt{x}-3}{x+\sqrt{x}+1}\)

Đặt 5x+17-(2x+5)=0

=>5x+17-2x-5=0

=>3x+12=0

=>3x=-12

=>\(x=-\dfrac{12}{3}=-4\)

2 tháng 7

Số lượng số hạng:

(202 - 4) : 3 + 1= 67 (số hạng)

Tổng:
(202 + 4) x 67 : 2 = 6901

ĐS: ...

Tùy nha bạn

Lên lớp 10 cái đó được tính vào phần toán đại đấy

Diện tích xung quanh của căn phòng là:

\(\left(8+6\right)\times2\times4=8\times14=112\left(m^2\right)\)

Diện tích trần nhà là \(8\times6=48\left(m^2\right)\)

Diện tích cửa ra vào là 1x2,2=2,2(m2)

Diện tích 4 cửa số hình vuông là:

4x0,8x0,8=0,64x4=2,56(m2)

Diện tích cần quét vôi là:

112+48-2,2-2,56=155,24(m2)

2 tháng 7

Diện tích của tất cả cửa là:

\(1\times2,2+4\times0,8\times0,8=4,76\left(m^2\right)\)

Diện tích xung quanh và trần nhà là::

\(2\times4\times\left(8+6\right)+6\times8=160\left(m^2\right)\)

Diện tich cần quét vôi là:

\(160-4,76=155,24\left(m^2\right)\)

\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}+\dfrac{x-3}{2009}+\dfrac{x-4}{2008}=4\)

=>\(\left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)+\left(\dfrac{x-3}{2009}-1\right)+\left(\dfrac{x-4}{2008}-1\right)=0\)

=>\(\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}+\dfrac{x-2012}{2009}+\dfrac{x-2012}{2008}=0\)

=>\(\left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\)

=>x-2012=0

=>x=2012

2 tháng 7

\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}+\dfrac{x-3}{2009}+\dfrac{x-4}{2008}=4\\ \left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)+\left(\dfrac{x-3}{2009}-1\right)+\left(\dfrac{x-4}{2008}-1\right)=0\\ \dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}+\dfrac{x-2012}{2009}+\dfrac{x-2012}{2008}=0\\ \left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2008}\right)=0\\ x-2012=0\\ x=2012\)

2 tháng 7

Đổi: 8 phút = \(\dfrac{2}{15}\left(h\right)\)

Vận tốc của xe đạp là:

\(1,6:\dfrac{2}{15}=12\left(km/h\right)\)

1,6km=1600m

Vận tốc của xe đạp là 1600:8=200(m/p)=12km/h

=>Chọn C

1: Sửa đề: Vẽ \(\widehat{x'Ay'}\) là góc đối đỉnh của góc xAy

loading...

2: Ta có: \(\widehat{xAy}+\widehat{xAy'}=180^0\)(hai góc kề bù)

=>\(\widehat{xAy'}+100^0=180^0\)

=>\(\widehat{xAy'}=80^0\)

Ta có: \(\widehat{xAy}=\widehat{x'Ay'}\)(hai góc đối đỉnh)

mà \(\widehat{xAy}=100^0\)

nên \(\widehat{x'A'y}=100^0\)

Ta có: \(\widehat{xAy'}=\widehat{x'Ay}\)(hai góc đối đỉnh)

mà \(\widehat{xAy'}=80^0\)

nên \(\widehat{x'Ay}=80^0\)