Chứng minh rằng
\(\frac{\sqrt[2016]{9}+\sqrt[2016]{16}+\sqrt[2016]{25}}{\sqrt[2016]{12}+\sqrt[2016]{15}+\sqrt[2016]{20}}>\frac{\sqrt[2017]{12}+\sqrt[2017]{15}+\sqrt[2017]{20}}{\sqrt[2017]{9}+\sqrt[2017]{16}+\sqrt[2017]{25}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{4}{3}}{3}=\frac{a+b}{3}+\frac{4}{9}\)
Tương tự rồi cộng các vế của BĐT lại, ta được: \(\sqrt[3]{\frac{4}{9}}P\le\frac{2\left(a+b+c\right)}{3}+\frac{4}{3}=2\Rightarrow P\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)
Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)
Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)
Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1
Vậy minP=\(\frac{3}{2}\)khi x=y=z=1
Ap dung bo de : \(\sqrt{x-1}+\sqrt{y-1}\le\sqrt{xy}\left(x,y\ge1\right)\) (1)
(1) <=> \(2\sqrt{\left(x-1\right)\left(y-1\right)}\le\left(x-1\right)\left(y-1\right)+1\) (dung theo AM-GM)
Ta co \(VT\le\sqrt{ab}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}=VP\)
Dau = xay ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\\left(ab+1\right)\left(c-1\right)=1\end{cases}}\)
Trước hết, ta đi chứng minh bổ đề: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(*) (với \(p,q\ge1\))
Thật vậy: (*)\(\Leftrightarrow\left(\sqrt{p-1}+\sqrt{q-1}\right)^2\le pq\) \(\Leftrightarrow\left(p-1\right)+\left(q-1\right)+2\sqrt{\left(p-1\right)\left(q-1\right)}\le pq\)\(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(pq-p-q+1\right)+1\) \(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(p-1\right)\left(q-1\right)+1\)
Bất đẳng thức cuối đúng theo bất đẳng thức AM - GM vì \(\left(p-1\right)\left(q-1\right)+1\ge2\sqrt{\left(p-1\right)\left(q-1\right).1}=2\sqrt{\left(p-1\right)\left(q-1\right)}\)
Như vậy, ta đã chứng minh được bất đẳng thức phụ: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(với \(p,q\ge1\))
Áp dụng vào bài toán, ta được: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{ab}+\sqrt{c-1}\)\(=\sqrt{\left(ab+1\right)-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\)(q.e.d)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\ab\left(c-1\right)=1\end{cases}}\)
đặt a-1=x2;b-1=y2;c-1=z2 với x,y,z>0. Bất đẳng thức cần chứng minh trở thành
\(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(y^2+1\right)\left(x^2+1\right)+1\right]}\)
áp dụng bđt Cauchy-Schwarz ta có \(x+y\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\Rightarrow x+y+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)+z}\left(1\right)̸\)
\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)+1}\cdot\sqrt{z^2+1}\)(2)
kết hợp (1) và (2) ta có \(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(x^2+1\right)\left(y^2+1\right)+1\right]}\)
vậy \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\left(đpcm\right)\)
sửa: chứng minh \(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{3}{2}\)
áp dụng bđt Cauchy ta có
\(\frac{1}{1+ab}=1-\frac{1}{1+ab}\ge1-\frac{ab}{2\sqrt{ab}}=1-\frac{\sqrt{ab}}{2}\)
tương tự ta có \(\hept{\begin{cases}\frac{1}{1+bc}\ge1-\frac{\sqrt{bc}}{2}\\\frac{1}{1+ca}\ge1-\frac{\sqrt{ca}}{2}\end{cases}}\)
cộng theo vế các bđt trên và áp dụng bđt Cauchy ta được
\(\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ac}\ge3-\frac{1}{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\ge3-\frac{1}{2}\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)=3-\frac{a+b+c}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}1+ab=1+bc=1+ca\\a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)
+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)
\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)