K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

Trung bình mỗi năm, giả sử dân số của thành phố đó tăng \(x\%\) \(\left(0< x< 100\right)\)

Sau năm thứ nhất, dân số ở thành phố đó sẽ là \(4000000+4000000.x\%\)

Sau năm thứ hai, dân số ở thành phố đó sẽ là \(\left(4000000+4000000.x\%\right)+\left(4000000+4000000.x\%\right).x\%\)\(=4000000+8000000.\dfrac{x}{100}+4000000.\dfrac{x}{100}.\dfrac{x}{100}\)\(=400x^2+80000x+4000000\)

Vì sau 2 năm, dân số của thành phố đó tăng thành 4 056 196 người nên ta có pt \(400x^2+80000x+4000000=4056196\)\(\Leftrightarrow400x^2+80000x-56196=0\)\(\Leftrightarrow100x^2+20000x-14049=0\) (*)

pt (*) có \(\Delta'=10000^2-100\left(-14049\right)=101404900>0\)

\(\Rightarrow\) pt (*) có 2 npb \(\left[{}\begin{matrix}x_1=\dfrac{-10000+\sqrt{101404900}}{100}=0,7\left(nhận\right)\\x_2=\dfrac{-10000-\sqrt{101404900}}{100}=-200,7\left(loại\right)\end{matrix}\right.\)

Vậy trung bình 1 năm dân số của thành phố tăng \(0,7\%\)

 

20 tháng 5 2022

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}\Rightarrow\dfrac{BH}{30}=\dfrac{5}{6}\Rightarrow BH=25\)

Ta có

\(AH^2=BH.CH\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{30^2}{25}=36\)

=> x=25; y=36

20 tháng 5 2022

Ta có : \(xyz=1\rightarrow\left\{{}\begin{matrix}xy=\dfrac{1}{z}\\xz=\dfrac{1}{y}\\yz=\dfrac{1}{x}\end{matrix}\right.\)

Do đó : \(A=\left(1+x\right)\left(1+y\right)\left(1+z\right)\)

\(A=1+x+y+z+xy+yz+xz+xyz\)

\(A=1+x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+1\)

\(A=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)+2\)

Áp dụng BĐT \(a+b\ge2\sqrt{ab}\left(a,b>0\right)\) 

Dấu \(=\) xảy ra \(\Leftrightarrow a=b\)

với \(x,y,z>0\) Ta được :

\(A\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}+2=2+2+2+2=8\)

Dấu \(=\) xảy ra \(\Leftrightarrow\)

\(\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\y^2=1\\z^2=1\end{matrix}\right.\Rightarrow x=y=z=1\) ( vì \(x,y,z>0\) )

 

DD
19 tháng 5 2022

\(\sqrt{\overline{abc}}-\sqrt{\overline{acb}}=1\Leftrightarrow\left(\sqrt{\overline{abc}}-\sqrt{\overline{acb}}\right)\left(\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\right)=\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\)

\(\Leftrightarrow\overline{abc}-\overline{acb}=\sqrt{\overline{abc}}+\sqrt{\overline{acb}}\)

Ta có: \(\overline{abc}-\overline{acb}=9b-9c=9\left(b-c\right)\) 

suy ra \(\sqrt{\overline{abc}}\)  và \(\sqrt{\overline{acb}}\) là hai số tự nhiên liên tiếp có tổng chia hết cho \(9\)

mà \(10\le\sqrt{\overline{acb}}< \sqrt{\overline{abc}}< 32\) nên suy ra \(\sqrt{\overline{acb}}\in\left\{13,22\right\}\).

Thử với từng trường hợp ta được \(\sqrt{\overline{acb}}=13\) suy ra \(\overline{acb}=169\) thỏa mãn \(\sqrt{\overline{abc}}=\sqrt{196}=14=13+1\).

Vậy \(\overline{abc}=196\)

DD
19 tháng 5 2022

b) Phương trình (1) có hai nghiệm \(x_1,x_2\) do có hệ số \(ac=1.\left(-8\right)=-8< 0\).

Theo định lí Viete ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=2-m\\x_1x_2=-8\end{matrix}\right.\)

Ta có: 

\(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2x_2^2-\left(x_1^2+x_2^2\right)+1=x_1^2x_2^2-\left(x_1+x_2\right)^2+2x_1x_2+1\)

\(=64-\left(m-2\right)^2-16+1=49-\left(m-2\right)^2\le49\)

Dấu \(=\) xảy ra khi \(m-2=0\Leftrightarrow m=2\).

Vậy \(m=2\) thỏa mãn ycbt. 

 

18 tháng 5 2022

khuya qua rồi ngủ đi. Có giải cũng không nhớ đâu bạn.

Câu a: m = 1, x = 0 và x=2

Câu b  ∀mϵ R

vì  Δ = 12

18 tháng 5 2022

câu  b

Δ = (2m)2 - 4 (1) ( m2 -3)

Δ = 4m- 4 m+ 12

Δ = 12