$z^3-3yz^2+3y^2z-y^3=$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: A = x + 1.
B = x - 1.
Ta có: A - B = 2
A.B = ( x + 1 ) ( x - 1)
Biểu thức ban đầu trở thành:
\(A^3-B^3-6AB=\left(A-B\right)^3+3AB\left(A-B\right)-6AB=2^3+3AB.2-6AB=2^3=8\)
2 dòng thì chịu :V
Ta co:\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
Ta bien doi tuong duong BDT:
\(a^4+b^4+a^2+b^2+c^2+3a^2b^2-2a^3b-2ab^3\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2+a^2+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a^2+b^2-ab\right)^2+a^2+b^2+c^2\ge0\left(True\right)\)
Dau '=' xay ra khi \(a=b=c=0\)
\(VT\ge\left(a^4+a^2b^2\right)+\left(b^4+a^2b^2\right)+2\left(ab+bc+ca\right)\)\(+a^2b^2\ge2ab^3+2a^3b+2\left(ab+bc+ca\right)\)
Dấu ''='' xảy ra tại a=b=c=0
Ở bài này dùng \(x^2+y^2\ge2\left|xy\right|\ge2xy\)không chắc lắm
Câu a, b, c :Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 8 - Học toán với OnlineMath
Câu d, e, f: Câu hỏi của Trịnh Ánh My - Toán lớp 8 - Học toán với OnlineMath
Đặt \(x=\sqrt{10}sin^2a\); \(y=\sqrt{10}cos^2a\)
(Lúc đó: \(x+y=\sqrt{10}\left(sin^2a+cos^2a\right)=\sqrt{10}\))
Lúc đó: \(K=\left(1+100sin^8a\right)\left(1+100cos^8a\right)\)
\(=10^4sin^8acos^8a+200sin^4acos^4a-400sin^2acos^2a+101\)
Đặt \(sin^2acos^2a=l\)
\(\Rightarrow K=f\left(l\right)=10^4l^4+200l^2-400l+101\)
\(\Rightarrow K_{min}=f\left(\frac{1}{5}\right)=45\)
a) \(43x^3y^3-32x^2y^2\)
\(=x^2y^2\left(43xy-32\right)\)
b) \(ax-bx+ab-x^2\)
\(=\left(ax+ab\right)-\left(bx+x^2\right)\)
\(=a\left(b+x\right)-x\left(b+x\right)\)
\(=\left(a-x\right)\left(b+x\right)\)
c) \(12a^2b-18ab^2-30b^2\)
\(=6b\left(2a^2-3ab-5b\right)\)
d) \(27a^2\left(b-1\right)-9a^3\left(1-b\right)\)
\(=27a^2\left(b-1\right)+9a^3\left(b-1\right)\)
\(=\left(27a^2+9a^3\right)\left(b-1\right)\)
\(=9a^2\left(b-1\right)\left(a+3\right)\)
$ là bao nhiêu thế
Đề của bạn sai thì phải !
\($z^3-3yz^2+3y^2z-y^3=$\)
Đề là \(z^3-3yz^2+3y^2z-y^3=?\) hay sao ?