K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi độ dài mảnh đất ban đầu là x(m)

(Điều kiện: x>0)

Chiều dài mảnh đất mới là x+8(m)

Chiều rộng mảnh đất mới là x+4(m)

Diện tích mảnh đất đó tăng thêm 360m2 nên ta có:

\(\left(x+8\right)\left(x+4\right)-x^2=360\)

=>\(x^2+12x+32-x^2=360\)

=>12x=360-32=328

=>\(x=\dfrac{328}{12}=\dfrac{82}{3}\left(nhận\right)\)

Diện tích mảnh đất ban đầu là \(\left(\dfrac{82}{3}\right)^2=\dfrac{6724}{9}\left(m^2\right)\)

a: \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\x+y+2\left(x-y\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+2y+3x-3y=4\\x+y+2x-2y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x-y=4\\3x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-y-3x+y=4-5\\3x-y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=-1\\y=3x-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=3\cdot\dfrac{-1}{2}-5=-\dfrac{3}{2}-5=-\dfrac{13}{2}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\left(x+1\right)\left(y-1\right)=xy-1\\\left(x-3\right)\left(y+3\right)=xy-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}xy-x+y-1=xy-1\\xy+3x-3y-9=xy-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x+y=0\\3x-3y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-y=0\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y-x+y=0-2\\x-y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}0y=-2\\x-y=0\end{matrix}\right.\Leftrightarrow\left(x;y\right)\in\varnothing\)

ΔABC=ΔDEF

=>\(\widehat{A}=\widehat{D}\)

=>\(\widehat{D}=55^0\)

ΔABC=ΔDEF

=>\(\widehat{B}=\widehat{E}\)

=>\(\widehat{B}=75^0\)

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>\(\widehat{C}=180^0-55^0-75^0=50^0\)

=>\(\widehat{F}=\widehat{C}=50^0\)

\(\dfrac{11}{3}+\left|x\right|=\dfrac{9}{4}\)

=>\(\left|x\right|=\dfrac{9}{4}-\dfrac{11}{3}=\dfrac{27}{12}-\dfrac{44}{12}=-\dfrac{17}{12}\)

mà \(\left|x\right|>=0\forall x\)

nên \(x\in\varnothing\)

\(\left(\dfrac{1}{2}\right)^{x+2}=16^{4-2x}\)

=>\(2^{-x-2}=2^{4\left(4-2x\right)}\)

=>-x-2=4*(4-2x)

=>-x-2=16-8x

=>-x+8x=16+2

=>7x=18

=>\(x=\dfrac{18}{7}\)

a: \(\dfrac{x}{y}+\dfrac{y}{x}>=2\cdot\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)

b: \(\dfrac{1}{x}+\dfrac{1}{y}>=\dfrac{4}{x+y}\)

=>\(\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

=>\(\left(x+y\right)^2>=4xy\)

=>\(x^2+2xy+y^2-4xy>=0\)

=>\(x^2-2xy+y^2>=0\)

=>\(\left(x-y\right)^2>=0\)(luôn đúng)

29 tháng 7 2024

Bài 2:

a) \(\dfrac{-7}{-13}=\dfrac{7}{13}\) là số hưu tỉ dương

b) \(\dfrac{2}{-17}=-\dfrac{2}{17}\) là số hưu tỉ âm

c) \(-\dfrac{-6}{5}=\dfrac{6}{5}\) là số hưu tỉ dương

29 tháng 7 2024

Bài 3:

a) \(-2\dfrac{1}{4}=-\left(2+\dfrac{1}{4}\right)=-\dfrac{9}{4}\)

b) \(6\dfrac{2}{3}=6+\dfrac{2}{3}=\dfrac{20}{3}\)

c) \(-3\dfrac{1}{4}=-\left(3+\dfrac{1}{4}\right)=-\dfrac{13}{4}\)

a: \(x^2+y^2>=2xy\)

=>\(x^2-2xy+y^2>=0\)

=>\(\left(x-y\right)^2>=0\)(luôn đúng)

b: \(x^2+4xy>=-4y^2\)

=>\(x^2+4xy+4y^2>=0\)

=>\(\left(x+2y\right)^2>=0\)(luôn đúng)

c: \(2\left(x^2+y^2\right)>=\left(x+y\right)^2\)

=>\(2x^2+2y^2-x^2-2xy-y^2>=0\)

=>\(x^2-2xy+y^2>=0\)

=>\(\left(x-y\right)^2>=0\)(luôn đúng)

d: A={11;12;13;14;15;16;17;18;19;20}

A={x\(\in\)N|11<=x<=20}

Số phần tử của tập hợp A là 20-11+1=20-10=10(phần tử)

e: D={10;11;12;13;14;15}

D={x\(\in\)N|9<x<=15}

D có 15-10+1=5+1=6 phần tử

f: F={1;2;3;...;30}

F={x\(\in Z^+\)|x<=30}

Số phần tử của tập hợp F là 30-1+1=30(phần tử)

g: G={x\(\in\)N|x>5}

G={6;7;8;...}

G có vô số phần tử

h: C={18;19;...;100}

C={x\(\in\)N|18<=x<=100}

Số phần tử của tập hợp C là 100-18+1=83(phần tử)

i: B={102;105;...;999}

B={x\(\in\)N|100<=x<=999;x\(⋮\)3}

Số phần tử của tập hợp B là \(\left(999-102\right):3+1=300\)(phần tử)

a: 2a+3>2b+3

=>2a>2b

=>a>b

b: -3a-1>=-3b-1

=>\(-3a>=-3b\)

=>3a<=3b

=>a<=b

c: 5-2a<5-a-b

=>5-2a+a<5-b

=>5-a<5-b

=>a-5>b-5

=>a>b