Câu 57. Một bể bơi hình hộp chữ nhật có chiều dài 15m, chiều rộng 6m và chiều cao 3,5m. a)Tính diện tích a cần lát gạch trong lòng hồ (bao gồm các thành và đáy hồ) b) Biết mỗi viên gạch có kích thước 40cm * 50cm Tính số viên gạch phải dùng .Tính thể tích phần nước khi đầy bể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E, ta có:
BD là cạnh chung
góc ABD = góc DBE ( Vì BD là tia phân giác góc ABC )
`=>` tam giác ABD = tam giác EBD ( ch.gn )
b) Xét tam giác BAC và tam giác BEF, ta có:
góc FBC chung
BA = BE ( Vì tam giác ABD = tam giác EBD )
góc BAC = góc BEF = 90 độ
`=>` tam giác BAC = tam giác BEF ( g.c.g )
`=>` BF = BC ( 2 cạnh tương ứng )
`#NqHahh`
Do x và y là hai đại lượng tỉ lệ nghịch
\(\Rightarrow\dfrac{y_1}{y_2}=\dfrac{x_2}{x_1}\)
Do \(\dfrac{y_1}{y_2}=-1\Rightarrow\dfrac{x_2}{x_1}=-1\)
\(\Rightarrow x_1=-x_2;y_2=-y_1\)
\(\Rightarrow x_1-y_2=-x_2-\left(-y_1\right)=y_1-x_2=-18\)
Do x;y là 2 đại lượng tỉ lệ nghịch
\(\Rightarrow x_1y_1=x_2y_2\Rightarrow\dfrac{y_1}{y_2}=\dfrac{x_2}{x_1}=\dfrac{y_1-x_2}{y_2-x_1}=-1\)
\(\Rightarrow\dfrac{-18}{y_2-x_1}=-1\Rightarrow y_2-x_1=18\)
\(\Rightarrow x_1-y_2=-18\)
\(x\) tỉ lệ thuận với \(y\) theo hệ số tỉ lệ là 2
\(\Rightarrow x=2y\)
\(y\) tỉ lệ thuận với \(z\) theo hệ số tỉ lệ \(-\dfrac{1}{2}\)
\(\Rightarrow y=\dfrac{-1}{2}.z\)
\(\Rightarrow x=2y=2.\left(-\dfrac{1}{2}.z\right)=-z\)
Khi \(x=5\Rightarrow-z=5\Rightarrow z=-5\)
x tỉ lệ thuận y theo hệ số tỉ lệ \(k=2\Rightarrow x=2y\)
y và z tỉ lệ nghịch theo hệ số tỉ lệ \(k=-\dfrac{1}{2}\Rightarrow yz=-\dfrac{1}{2}\)
Khi \(x=-5\Rightarrow y=\dfrac{x}{2}=-\dfrac{5}{2}\)
\(\Rightarrow\left(-\dfrac{5}{2}\right).z=-\dfrac{1}{2}\)
\(\Rightarrow z=-\dfrac{1}{2}:\left(-\dfrac{5}{2}\right)=\dfrac{1}{5}\)
\(2x\left(3x^2+4x+1\right)\)
\(=2x.3x^2+2x.4x+2x.1\)
\(=6x^3+8x^2+2x\)
------------------
\(\left(2x+1\right)\left(x-2\right)\)
\(=2x\left(x-2\right)+1.\left(x-2\right)\)
\(=2x.x-2x.2+x-2\)
\(=2x^2-4x+x-2\)
\(=2x^2+\left(-4x+x\right)-2\)
\(=2x^2-3x-2\)
a, Thu gọn và sắp xếp đa thức theo lũy thừa giảm dần của biến.
P(\(x\)) = 7\(x^3\) + 4\(x^4\) - 2\(x^2\) + 3\(x^2\) - 3\(x^3\) - \(x^4\) + 5 - 4\(x^3\)
P(\(x\)) = (7\(x^3\) - 3\(x^3\) - 4\(x^3\))+ (4\(x^4\) - \(x^4\)) - (2\(x^2\) - 3\(x^2\)) + 5
P(\(x\)) = 0 + 3\(x^4\) - (-\(x^2\)) +5
P(\(x\)) = 3\(x^4\) + \(x^2\) + 5
b; Hệ số cao nhất là 3; bậc của đa thức là 4; hệ số tự do của đa thức trên là 5
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
\(\widehat{ABH}=\widehat{MBH}\)
Do đó: ΔBAH=ΔBMH
b: ΔBAH=ΔBMH
=>BA=BM và HA=HM
Ta có: BA=BM
=>B nằm trên đường trung trực của AM(1)
ta có: HA=HM
=>H nằm trên đường trung trực của AM(2)
Từ (1),(2) suy ra BH là đường trung trực của AM
c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có
BM=BA
\(\widehat{MBN}\) chung
Do đó: ΔBMN=ΔBAC
=>BN=BC
Xét ΔBNC có \(\dfrac{BA}{BN}=\dfrac{BM}{BC}\)
nên AM//NC
d: Xét ΔBNC có
NM,CA là các đường cao
NM cắt CA tại H
Do đó: H là trực tâm của ΔBNC
=>BH\(\perp\)CN
a) Diện tích xung quanh bể bơi:
\(\left(15+6\right).2.3,5=147\left(m^2\right)\)
Diện tích đáy bể:
\(15.6=90\left(m^2\right)\)
Diện tích cần lát gạch:
\(147+90=237\left(m^2\right)\)
b) Diện tích viên gạch:
\(40.50=2000\left(cm^2\right)=0,2\left(m^2\right)\)
Số viên gạch cần dùng để lát:
\(237:0,2=1185\) (viên)
c) Thể tích nước khi đầy bể:
\(15.6.3,5=315\left(m^3\right)\)