1 người lái xe ô tô vượt qua 1 ngọn đồi nhỏ biết độ dài quãng đường lên dốc = độ dài quãng đường xuống dốc là 15km. Từ lúc bắt đầu đến lúc lên đỉnh người này chỉ đi với vận tốc 15km/h. Vậy khi xuống dốc người này phải đi với vận tốc bao nhiêu để vận tốc trung bình trên cả quãng đường là 30km/h
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{2x+4}{1-2x}\)
A \(\in\) Z ⇔ 2\(x\) + 4 ⋮ 1 - 2\(x\)
- (1 -2\(x\)) + 5 ⋮ 1 - 2\(x\)
5 ⋮ 1 - 2\(x\)
1 - 2\(x\) \(\in\){ -5; -1; 1; 5}
\(x\) \(\in\) { 3; 1; 0; -2}
A = (\(x-3\))2 = \(x^2\) - 6\(x\) + 9
B = (2\(x\) - 3)2 = ( - (2\(x\) - 3) )2 = ( 3 - 2\(x\))2
C = (\(x\) + 2y)2 = \(x^2\) + 4\(x\)y + 4y2
D = (\(x\) - 1)3 = \(x^3\) - 3\(x^2\) + 3\(x\) - 1
( 1 - \(x\))3 = 1 - 3\(x\) + 3\(x^2\) - \(x^3\)
Khẳng định đúng là: B. ( 2\(x\) - 3)2 = ( 3 - 2\(x\))2
0,8 - ( \(x-1,2\)) = - 3(\(x+1,3\))
0,8 - \(x\) + 1,2 = -3\(x\) - 3,9
2 - \(x\) = -3\(x\) - 3,9
2 - \(x\) - (-3\(x\) - 3,9) = 0
2 - \(x\) + 3\(x\) + 3,9 = 0
2\(x\) + 5,9 = 0
Với a = 2 thì b = 5,9
b, 2\(x\) + 5,9 = 0
2\(x\) = - 5,9
\(x\) = -5,9 : 2
\(x\) = -2,95
Nghiệm của phương trình là: -2,95
Giả sử độ dài của đoạn đường lên đồi và xuống đồi là x km. Khi đi lên đồi, thời gian đi được là t1 = x/15 (vì vận tốc là 15km/h). Khi đi xuống đồi, thời gian đi được là t2 = x/v2 (vì cần tìm vận tốc đi xuống đồi để vận tốc trung bình trên cả quãng đường là 30km/h).
Vận tốc trung bình trên cả quãng đường là:
v = tổng quãng đường / tổng thời gian
30 = 2x/(t1 + t2) = 2x/(x/15 + x/v2)
30 = 2*15*v2/(15+v2)
450 + 30v2 = 30v2 + 30*15
v2 = 30 km/h
Vậy người này phải đi với vận tốc 30 km/h khi đi xuống đồi để vận tốc trung bình trên cả quãng đường là 30 km/h.
ôi9ol